Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Identification of Glutathione Conjugates of Acetylene-Containing Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5

Xiaoliang Zhuo, Xiaohua Stella Huang, Andrew P. Degnan, Lawrence B. Snyder, Fukang Yang, Hong Huang, Yue-Zhong Shu and Benjamin M. Johnson
Drug Metabolism and Disposition April 2015, 43 (4) 578-589; DOI: https://doi.org/10.1124/dmd.114.061879
Xiaoliang Zhuo
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaohua Stella Huang
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew P. Degnan
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lawrence B. Snyder
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fukang Yang
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Huang
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yue-Zhong Shu
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin M. Johnson
Department of Biotransformation (X.Z., B.M.J.), Discovery Analytical Sciences (X.S.H.), Neuroscience Chemistry (A.P.D., L.B.S., F.Y., H.H.), Bristol-Myers Squibb Company, Wallingford, Connecticut; and Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.-Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A recent medicinal chemistry campaign to identify positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) led to the discovery of potent compounds featuring an oxazolidinone structural core flanked by biaryl acetylene and haloaryl moieties. However, biotransformation studies of some of these mGluR5 PAMs demonstrated the formation of glutathione (GSH) conjugates. The conjugates in question were formed independently of NADPH as the main products in liver microsomes and liver cytosol (rat and human) and exhibited masses that were 307 u greater than their respective substrates, indicating the involvement of a reductive step in the formation of these metabolites. To further characterize the relevant metabolic sequences, GSH conjugates of (4R,5R)-5-(3-fluorophenyl)-4-(5-(pyrazin-2-ylethynyl)pyridin-3-yl)oxazolidin-2-one and (4R,5R)-5-(4-fluorophenyl)-4-(6-((3-fluoropyridin-2-yl)ethynyl)pyridin-2-yl)oxazolidin-2-one were biosynthesized and isolated. Subsequent analysis by NMR showed that GSH had reacted with the acetylene carbon atoms of these mGluR5 PAMs, suggesting a conjugate addition mechanism and implicating cytosolic and microsomal GSH S-transferases (GSTs) in catalysis. Interestingly, five closely related mGluR5 PAMs were not similarly prone to the formation of GSH conjugates in vitro. These compounds also featured acetylenes, but were flanked by either phenyl or cyclohexyl rings, which indicated that the formation of GSH conjugates was influenced by proximal functional groups that modulated the electron density of the triple bond and/or differences in enzyme-substrate specificity. These results informed an ongoing drug-discovery effort to identify mGluR5 PAMs with drug-like properties and a low risk of reactivity with endogenous thiols.

Footnotes

    • Received November 6, 2014.
    • Accepted January 29, 2015.
  • dx.doi.org/10.1124/dmd.114.061879.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (4)
Drug Metabolism and Disposition
Vol. 43, Issue 4
1 Apr 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of Glutathione Conjugates of Acetylene-Containing Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

GSH Conjugation of Acetylene-Containing mGluR5 PAMs

Xiaoliang Zhuo, Xiaohua Stella Huang, Andrew P. Degnan, Lawrence B. Snyder, Fukang Yang, Hong Huang, Yue-Zhong Shu and Benjamin M. Johnson
Drug Metabolism and Disposition April 1, 2015, 43 (4) 578-589; DOI: https://doi.org/10.1124/dmd.114.061879

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

GSH Conjugation of Acetylene-Containing mGluR5 PAMs

Xiaoliang Zhuo, Xiaohua Stella Huang, Andrew P. Degnan, Lawrence B. Snyder, Fukang Yang, Hong Huang, Yue-Zhong Shu and Benjamin M. Johnson
Drug Metabolism and Disposition April 1, 2015, 43 (4) 578-589; DOI: https://doi.org/10.1124/dmd.114.061879
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics