Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Hydroxylation and N-Dechloroethylation of Ifosfamide and Deuterated Ifosfamide by the Human Cytochrome P450s and Their Commonly Occurring Polymorphisms

Diane M. Calinski, Haoming Zhang, Susan Ludeman, M. Eileen Dolan and Paul F. Hollenberg
Drug Metabolism and Disposition July 2015, 43 (7) 1084-1090; DOI: https://doi.org/10.1124/dmd.115.063628
Diane M. Calinski
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (D.M.C., H.Z., P.F.H.); Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York (S.L.); and Department of Medicine, University of Chicago, Chicago, Illinois (M.E.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haoming Zhang
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (D.M.C., H.Z., P.F.H.); Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York (S.L.); and Department of Medicine, University of Chicago, Chicago, Illinois (M.E.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susan Ludeman
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (D.M.C., H.Z., P.F.H.); Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York (S.L.); and Department of Medicine, University of Chicago, Chicago, Illinois (M.E.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Eileen Dolan
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (D.M.C., H.Z., P.F.H.); Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York (S.L.); and Department of Medicine, University of Chicago, Chicago, Illinois (M.E.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul F. Hollenberg
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (D.M.C., H.Z., P.F.H.); Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York (S.L.); and Department of Medicine, University of Chicago, Chicago, Illinois (M.E.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The hydroxylation and N-dechloroethylation of deuterated ifosfamide (d4IFO) and ifosfamide (IFO) by several human P450s have been determined and compared. d4IFO was synthesized with deuterium at the alpha and alpha′ carbons to decrease the rate of N-dechloroethylation and thereby enhance hydroxylation of the drug at the 4′ position. The purpose was to decrease the toxic and increase the efficacious metabolites of IFO. For all of the P450s tested, hydroxylation of d4IFO was improved and dechloroethylation was reduced as compared with nondeuterated IFO. Although the differences were not statistically significant, the trend favoring the 4′-hydroxylation pathway was noteworthy. CYP3A5 and CYP2C19 were the most efficient enzymes for catalyzing IFO hydroxylation. The importance of these enzymes in IFO metabolism has not been reported previously and warrants further investigation. The catalytic ability of the common polymorphisms of CYP2B6 and CYP2C9 for both reactions were tested with IFO and d4IFO. It was determined that the commonly expressed polymorphisms CYP2B6*4 and CYP2B6*6 had reduced catalytic ability for IFO compared with CYP2B6*1, whereas CYP2B6*7 and CYP2B6*9 had enhanced catalytic ability. As with the wild-type enzymes, d4IFO was more readily hydroxylated by the polymorphic variants than IFO, and d4IFO was not dechloroethylated by any of the polymorphic forms. We also assessed the use of specific inhibitors of P450 to favor hydroxylation in human liver microsomes. We were unable to separate the pathways with these experiments, suggesting that multiple P450s are responsible for catalyzing both metabolic pathways for IFO, which is not observed with the closely related drug cyclophosphamide.

Footnotes

    • Received January 29, 2015.
    • Accepted April 30, 2015.
  • This work was supported in part by the National Institutes of Health National Cancer Institute [Grant CA16954].

  • dx.doi.org/10.1124/dmd.115.063628.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (7)
Drug Metabolism and Disposition
Vol. 43, Issue 7
1 Jul 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hydroxylation and N-Dechloroethylation of Ifosfamide and Deuterated Ifosfamide by the Human Cytochrome P450s and Their Commonly Occurring Polymorphisms
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Cytochrome P450 Metabolism of Ifosfamide and Deuterated Ifosfamide

Diane M. Calinski, Haoming Zhang, Susan Ludeman, M. Eileen Dolan and Paul F. Hollenberg
Drug Metabolism and Disposition July 1, 2015, 43 (7) 1084-1090; DOI: https://doi.org/10.1124/dmd.115.063628

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Cytochrome P450 Metabolism of Ifosfamide and Deuterated Ifosfamide

Diane M. Calinski, Haoming Zhang, Susan Ludeman, M. Eileen Dolan and Paul F. Hollenberg
Drug Metabolism and Disposition July 1, 2015, 43 (7) 1084-1090; DOI: https://doi.org/10.1124/dmd.115.063628
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics