Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor

Ujjal Sarkar, Dinelia Rivera-Burgos, Emma M. Large, David J. Hughes, Kodihalli C. Ravindra, Rachel L. Dyer, Mohammad R. Ebrahimkhani, John S. Wishnok, Linda G. Griffith and Steven R. Tannenbaum
Drug Metabolism and Disposition July 2015, 43 (7) 1091-1099; DOI: https://doi.org/10.1124/dmd.115.063495
Ujjal Sarkar
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dinelia Rivera-Burgos
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emma M. Large
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David J. Hughes
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kodihalli C. Ravindra
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rachel L. Dyer
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohammad R. Ebrahimkhani
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John S. Wishnok
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Linda G. Griffith
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven R. Tannenbaum
Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte–Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase–ultra high-performance liquid chromatography–quadrupole time of flight–mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8–10% of the loss, and 45–52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour−1, 6.6 × 10−5 l⋅hour−1, and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver.

Footnotes

    • Received January 23, 2015.
    • Accepted April 29, 2015.
  • U.S. and D.R.-B. contributed equally to this work.

  • This research was supported by the United States Defense Advanced Research Projects Agency [grant W911NF-12-2-0039], the National Institutes of Health [grant 5-UH2-TR000496], and the Massachusetts Institute of Technology Center for Environmental Health Sciences [grant P30-ES002109].

  • dx.doi.org/10.1124/dmd.115.063495.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (7)
Drug Metabolism and Disposition
Vol. 43, Issue 7
1 Jul 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Hydrocortisone Metabolism in a 3D Bioreactor

Ujjal Sarkar, Dinelia Rivera-Burgos, Emma M. Large, David J. Hughes, Kodihalli C. Ravindra, Rachel L. Dyer, Mohammad R. Ebrahimkhani, John S. Wishnok, Linda G. Griffith and Steven R. Tannenbaum
Drug Metabolism and Disposition July 1, 2015, 43 (7) 1091-1099; DOI: https://doi.org/10.1124/dmd.115.063495

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Hydrocortisone Metabolism in a 3D Bioreactor

Ujjal Sarkar, Dinelia Rivera-Burgos, Emma M. Large, David J. Hughes, Kodihalli C. Ravindra, Rachel L. Dyer, Mohammad R. Ebrahimkhani, John S. Wishnok, Linda G. Griffith and Steven R. Tannenbaum
Drug Metabolism and Disposition July 1, 2015, 43 (7) 1091-1099; DOI: https://doi.org/10.1124/dmd.115.063495
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • AKRs and GUSs in Testosterone Disposition
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics