Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Multidrug Resistance-Associated Protein 3 Plays an Important Role in Protection against Acute Toxicity of Diclofenac

Renato J. Scialis, Iván L. Csanaky, Michael J. Goedken and José E. Manautou
Drug Metabolism and Disposition July 2015, 43 (7) 944-950; DOI: https://doi.org/10.1124/dmd.114.061705
Renato J. Scialis
University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Iván L. Csanaky
University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael J. Goedken
University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José E. Manautou
University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Diclofenac (DCF) is a nonsteroidal anti-inflammatory drug commonly prescribed to reduce pain in acute and chronic inflammatory diseases. One of the main DCF metabolites is a reactive diclofenac acyl glucuronide (DCF-AG) that covalently binds to biologic targets and may contribute to adverse drug reactions arising from DCF use. Cellular efflux of DCF-AG is partially mediated by multidrug resistance-associated proteins (Mrp). The importance of Mrp2 during DCF-induced toxicity has been established, yet the role of Mrp3 remains largely unexplored. In the present work, Mrp3-null (KO) mice were used to study the toxicokinetics and toxicodynamics of DCF and its metabolites. DCF-AG plasma concentrations were 90% lower in KO mice than in wild-type (WT) mice, indicating that Mrp3 mediates DCF-AG basolateral efflux. In contrast, there were no differences in DCF-AG biliary excretion between WT and KO, suggesting that only DCF-AG basolateral efflux is compromised by Mrp3 deletion. Susceptibility to toxicity was also evaluated after a single high DCF dose. No signs of injury were detected in livers and kidneys; however, ulcers were found in the small intestines. Furthermore, the observed intestinal injuries were consistently more severe in KO compared with WT. DCF covalent adducts were observed in liver and small intestines; however, staining intensity did not correlate with the severity of injuries, implying that tissues respond differently to covalent modification. Overall, the data provide strong evidence that (1) in vivo Mrp3 plays an important role in DCF-AG disposition and (2) compromised Mrp3 function can enhance injury in the gastrointestinal tract after DCF treatment.

Footnotes

    • Received October 27, 2014.
    • Accepted April 20, 2015.
  • This work was supported by the National Institutes of Health [Grant DK069557].

  • dx.doi.org/10.1124/dmd.114.061705.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (7)
Drug Metabolism and Disposition
Vol. 43, Issue 7
1 Jul 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Multidrug Resistance-Associated Protein 3 Plays an Important Role in Protection against Acute Toxicity of Diclofenac
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Role of Mrp3 in Diclofenac-Induced Toxicity

Renato J. Scialis, Iván L. Csanaky, Michael J. Goedken and José E. Manautou
Drug Metabolism and Disposition July 1, 2015, 43 (7) 944-950; DOI: https://doi.org/10.1124/dmd.114.061705

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Role of Mrp3 in Diclofenac-Induced Toxicity

Renato J. Scialis, Iván L. Csanaky, Michael J. Goedken and José E. Manautou
Drug Metabolism and Disposition July 1, 2015, 43 (7) 944-950; DOI: https://doi.org/10.1124/dmd.114.061705
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics