Abstract
Doxycycline (doxy) is used in treating intracellular and extracellular infections. Liposomal (LE) antibiotics allow low-frequency dosing and extended efficacy compared with standard (STD) formulations. We developed a novel sulfuric acid–loading method for doxycycline liposomes (LE-doxy). We hypothesized that a single s.c. injection of LE-doxy would be detectable in serum for at least 2 weeks at concentrations equal to or better than STD-doxy and would be bactericidal in an in vitro Mycobacterium smegmatis infection of J774A.1 macrophage cells. Liposomes were encapsulated by sulfuric acid gradient loading, and release kinetics were performed in vitro and in vivo. LE-doxy made using 8.25 mg/ml doxycycline loaded for 24 hours achieved 97.77% capture in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 43.87% in sphingomyelin (sphing). Rats were injected s.c. with 50 mg/kg LE-doxy or 5 mg/kg STD-doxy, and serial blood samples were collected. Pharmacokinetics were analyzed using high-performance liquid chromatography. Liver and injection site skin samples were collected at euthanasia (4 weeks postinjection). Minimal histologic tissue reactions occurred after injection of STD (nonliposomal), DPPC, or sphing-doxy. DPPC-doxy had slightly faster in vitro leakage than sphing liposomes, although both were detectable at 264 hours. The mean residence time for DPPC was the highest (111.78 hours), followed by sphing (56.00 hours) and STD (6.86 hours). DPPC and sphing-doxy were detectable at 0.2 μg/ml in serum at 336 hours postadministration. LE-doxy was not toxic to J774A.1 cells in vitro and produced inhibition of viable Mycobacterium smegmatis at 24 and 48 hours. LE-doxy will require further testing in in vivo infection models.
Footnotes
- Received January 29, 2015.
- Accepted June 1, 2015.
This work was supported in part by departmental funds from the Research Animal Resources Center, University of Wisconsin, Madison, Wisconsin; the Companion Animal Fund, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin; a gift from Comfort Care for Animals, LLC; and the National Institutes of Health [Grant NIH-1R21AI090308].
↵
This article has supplemental material available at dmd.aspetjournals.org.
- Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|