Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationShort Communication

Danazol Inhibits Cytochrome P450 2J2 Activity in a Substrate-independent Manner

Eunyoung Lee, Zhexue Wu, Jong Cheol Shon and Kwang-Hyeon Liu
Drug Metabolism and Disposition August 2015, 43 (8) 1250-1253; DOI: https://doi.org/10.1124/dmd.115.064345
Eunyoung Lee
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhexue Wu
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jong Cheol Shon
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kwang-Hyeon Liu
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cytochrome P450 2J2 (CYP2J2) is an enzyme responsible for the metabolism of endogenous substrates including arachidonic acid, as well as therapeutic drugs such as albendazole, astemizole, ebastine, and terfenadine. Selective inhibitors of CYP2J2 are essential for P450 reaction phenotyping studies. To find representative CYP2J2 index inhibitors, we evaluated the inhibitory potential of danazol, hydroxyebastine, telmisartan, and terfenadone against CYP2J2 activity for four representative CYP2J2 substrates (albendazole, astemizole, ebastine, and terfenadine) using recombinant CYP2J2. Of these four CYP2J2 inhibitors, danazol strongly inhibited CYP2J2-mediated albendazole, astemizole, ebastine, and terfenadine metabolism in a substrate-independent manner, with IC50 values of 0.05, 0.07, 0.18, and 0.34 μM, respectively. Danazol noncompetitively inhibited CYP2J2-mediated astemizole O-demethylation activities with a Ki value of 0.06 μM. Terfenadone strongly inhibited CYP2J2-mediated albendazole, astemizole, and terfenadine metabolism (IC50 < 0.21 μM), whereas it showed weak inhibition against CYP2J2-catalyzed ebastine hydroxylase activity (IC50 = 6.04 μM). Telmisartan had no inhibitory effect on CYP2J2-mediated ebastine and terfenadine hydroxylation (IC50 > 20 μM). Taken together, these data suggest that danazol may be used as a CYP2J2 index inhibitor in reaction phenotyping studies.

Footnotes

    • Received March 18, 2015.
    • Accepted June 5, 2015.
  • E.L. and Z.W. contributed equally to this work.

  • This study was supported by grants from the National Research Foundation of Korea, Ministry of Science, ICT and Future Planning [NRF-2014M3A9D9069714]; and Ministry of Education [NRF-2013R1A1A2008442], Republic of Korea.

  • dx.doi.org/10.1124/dmd.115.064345.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (8)
Drug Metabolism and Disposition
Vol. 43, Issue 8
1 Aug 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Danazol Inhibits Cytochrome P450 2J2 Activity in a Substrate-independent Manner
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationShort Communication

Substrate-Independent Inhibition of P450 2J2 by Danazol

Eunyoung Lee, Zhexue Wu, Jong Cheol Shon and Kwang-Hyeon Liu
Drug Metabolism and Disposition August 1, 2015, 43 (8) 1250-1253; DOI: https://doi.org/10.1124/dmd.115.064345

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationShort Communication

Substrate-Independent Inhibition of P450 2J2 by Danazol

Eunyoung Lee, Zhexue Wu, Jong Cheol Shon and Kwang-Hyeon Liu
Drug Metabolism and Disposition August 1, 2015, 43 (8) 1250-1253; DOI: https://doi.org/10.1124/dmd.115.064345
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviation
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communications

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics