Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes

Wenqi Cui, Mengxi Sun, Nadezhda Galeva, Todd D. Williams, Yoshiaki Azuma and Jeff L. Staudinger
Drug Metabolism and Disposition September 2015, 43 (9) 1316-1325; DOI: https://doi.org/10.1124/dmd.115.065201
Wenqi Cui
Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mengxi Sun
Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nadezhda Galeva
Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Todd D. Williams
Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoshiaki Azuma
Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeff L. Staudinger
Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Several nuclear receptor (NR) superfamily members are known to be the molecular target of either the small ubiquitin-related modifier (SUMO) or ubiquitin-signaling pathways. However, little is currently known regarding how these two post-translational modifications interact to control NR biology. We show that SUMO and ubiquitin circuitry coordinately modifies the pregnane X receptor (PXR, NR1I2) to play a key role in regulating PXR protein stability, transactivation capacity, and transcriptional repression. The SUMOylation and ubiquitylation of PXR is increased in a ligand- and tumor necrosis factor alpha–dependent manner in hepatocytes. The SUMO-E3 ligase enzymes protein inhibitor of activated signal transducer and activator of transcription-1 (STAT1) STAT-1 (PIAS1) and protein inhibitor of activated STAT Y (PIASy) drive high levels of PXR SUMOylation. Expression of protein inhibitor of activated stat 1 selectively increases SUMO(3)ylation as well as PXR-mediated induction of cytochrome P450, family 3, subfamily A and the xenobiotic response. The PIASy-mediated SUMO(1)ylation imparts a transcriptionally repressive function by ameliorating interaction of PXR with coactivator protein peroxisome proliferator-activated receptor gamma coactivator-1-alpha. The SUMO modification of PXR is effectively antagonized by the SUMO protease sentrin protease (SENP) 2, whereas SENP3 and SENP6 proteases are highly active in the removal of SUMO2/3 chains. The PIASy-mediated SUMO(1)ylation of PXR inhibits ubiquitin-mediated degradation of this important liver-enriched NR by the 26S proteasome. Our data reveal a working model that delineates the interactive role that these two post-translational modifications play in reconciling PXR-mediated gene activation of the xenobiotic response versus transcriptional repression of the proinflammatory response in hepatocytes. Taken together, our data reveal that the SUMOylation and ubiquitylation of the PXR interface in a fundamental manner directs its biologic function in the liver in response to xenobiotic or inflammatory stress.

Footnotes

    • Received April 30, 2015.
    • Accepted June 10, 2015.
  • This work was supported by the National Institutes of Health National Institute of Digestive, Diabetic, and Kidney Diseases (NIDDK) [Grant R01DK090558] (to J.S.), University of Kansas, Strategic Initiative Grant [INS0073115], and by an award from the Centers of Biomedical Research Excellence (COBRE) and the National Institutes of Health National Institute of General Medical Sciences [Grant P20 GM103549]. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

  • dx.doi.org/10.1124/dmd.115.065201.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 43 (9)
Drug Metabolism and Disposition
Vol. 43, Issue 9
1 Sep 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

SUMOylation and Ubiquitylation of Pregnane X Receptor

Wenqi Cui, Mengxi Sun, Nadezhda Galeva, Todd D. Williams, Yoshiaki Azuma and Jeff L. Staudinger
Drug Metabolism and Disposition September 1, 2015, 43 (9) 1316-1325; DOI: https://doi.org/10.1124/dmd.115.065201

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

SUMOylation and Ubiquitylation of Pregnane X Receptor

Wenqi Cui, Mengxi Sun, Nadezhda Galeva, Todd D. Williams, Yoshiaki Azuma and Jeff L. Staudinger
Drug Metabolism and Disposition September 1, 2015, 43 (9) 1316-1325; DOI: https://doi.org/10.1124/dmd.115.065201
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • AKRs and GUSs in Testosterone Disposition
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics