Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationShort Communication

Defining the Role of the NADH–Cytochrome-b5 Reductase 3 in the Mitochondrial Amidoxime Reducing Component Enzyme System

Birte Plitzko, Antje Havemeyer, Bettina Bork, Florian Bittner, Ralf Mendel and Bernd Clement
Drug Metabolism and Disposition October 2016, 44 (10) 1617-1621; DOI: https://doi.org/10.1124/dmd.116.071845
Birte Plitzko
Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antje Havemeyer
Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bettina Bork
Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Florian Bittner
Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ralf Mendel
Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernd Clement
Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The importance of the mitochondrial amidoxime reducing component (mARC)–containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450– and flavin-containing monooxygenase–catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA–mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH–cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase.

Footnotes

    • Received May 28, 2016.
    • Accepted July 27, 2016.
  • This research was supported by the Deutsche Forschungsgemeinschaft [Grants CL56/9-1 and ME 1266/24-1].

  • dx.doi.org/10.1124/dmd.116.071845.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (10)
Drug Metabolism and Disposition
Vol. 44, Issue 10
1 Oct 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Defining the Role of the NADH–Cytochrome-b5 Reductase 3 in the Mitochondrial Amidoxime Reducing Component Enzyme System
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationShort Communication

NADH–Cytochrome-b5 Reductase 3 in N-Reductive Metabolism

Birte Plitzko, Antje Havemeyer, Bettina Bork, Florian Bittner, Ralf Mendel and Bernd Clement
Drug Metabolism and Disposition October 1, 2016, 44 (10) 1617-1621; DOI: https://doi.org/10.1124/dmd.116.071845

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationShort Communication

NADH–Cytochrome-b5 Reductase 3 in N-Reductive Metabolism

Birte Plitzko, Antje Havemeyer, Bettina Bork, Florian Bittner, Ralf Mendel and Bernd Clement
Drug Metabolism and Disposition October 1, 2016, 44 (10) 1617-1621; DOI: https://doi.org/10.1124/dmd.116.071845
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communications

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics