Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Clarification of the Mechanism of Clopidogrel-Mediated Drug–Drug Interaction in a Clinical Cassette Small-dose Study and Its Prediction Based on In Vitro Information

Soo-Jin Kim, Takashi Yoshikado, Ichiro Ieiri, Kazuya Maeda, Miyuki Kimura, Shin Irie, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition October 2016, 44 (10) 1622-1632; DOI: https://doi.org/10.1124/dmd.116.070276
Soo-Jin Kim
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Yoshikado
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ichiro Ieiri
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazuya Maeda
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miyuki Kimura
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shin Irie
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyuki Kusuhara
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuichi Sugiyama
Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Clopidogrel is reported to be associated with cerivastatin-induced rhabdomyolysis, and clopidogrel and its metabolites are capable of inhibiting CYP2C8 and OATP 1B1 in vitro. The objective of the present study was to identify the mechanism of clopidogrel-mediated drug–drug interactions (DDIs) on the pharmacokinetics of OATP1B1 and/or CYP2C8 substrates in vivo. A clinical cassette small-dose study using OATPs, CYP2C8, and OATP1B1/CYP2C8 probe drugs (pitavastatin, pioglitazone, and repaglinide, respectively) with or without the coadministration of either 600 mg rifampicin (an inhibitor for OATPs), 200 mg trimethoprim (an inhibitor for CYP2C8), or 300 mg clopidogrel was performed, and the area under the concentration–time curve (AUC) ratios (AUCRs) for probe substrates were predicted using a static model. Clopidogrel increased the AUC of pioglitazone (2.0-fold) and repaglinide (3.1-fold) but did not significantly change the AUC of pitavastatin (1.1-fold). In addition, the AUC of pioglitazone M4, a CYP2C8-mediated metabolite of pioglitazone, was reduced to 70% of the control by coadministration of clopidogrel. The predicted AUCRs using the mechanism-based inhibition of CYP2C8 by clopidogrel acyl-β-glucuronide were similar to the observed AUCRs, and the predicted AUCR (1.1) of repaglinide using only the inhibition of OATP1B1 did not reach the observed AUCR (3.1). In conclusion, a single 300 mg of clopidogrel mainly inhibits CYP2C8-mediated metabolism by clopidogrel acyl-β-glucuronide, but its effect on the pharmacokinetics of OATP1B1 substrates is negligible. Clopidogrel is expected to have an effect not only on CYP2C8 substrates, but also dual CYP2C8/OATP1B1 substrates as seen in the case of repaglinide.

Footnotes

    • Received March 1, 2016.
    • Accepted July 22, 2016.
  • This study was supported by the grants from the Tokyo Biochemical Research Foundation (Tokyo, Japan); a the Japan Research Foundation for Clinical Pharmacology (Tokyo, Japan); and Grant-in-Aid for Scientific Research (S) from the Ministry of Education, Culture, Sports, Sciences, and Technology in Japan [Grant 24229002].

  • dx.doi.org/10.1124/dmd.116.070276.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (10)
Drug Metabolism and Disposition
Vol. 44, Issue 10
1 Oct 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Clarification of the Mechanism of Clopidogrel-Mediated Drug–Drug Interaction in a Clinical Cassette Small-dose Study and Its Prediction Based on In Vitro Information
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mechanism of Clopidogrel-Mediated Drug–Drug Interaction

Soo-Jin Kim, Takashi Yoshikado, Ichiro Ieiri, Kazuya Maeda, Miyuki Kimura, Shin Irie, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition October 1, 2016, 44 (10) 1622-1632; DOI: https://doi.org/10.1124/dmd.116.070276

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mechanism of Clopidogrel-Mediated Drug–Drug Interaction

Soo-Jin Kim, Takashi Yoshikado, Ichiro Ieiri, Kazuya Maeda, Miyuki Kimura, Shin Irie, Hiroyuki Kusuhara and Yuichi Sugiyama
Drug Metabolism and Disposition October 1, 2016, 44 (10) 1622-1632; DOI: https://doi.org/10.1124/dmd.116.070276
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics