Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleCommentary

When Is It Important to Measure Unbound Drug in Evaluating Nanomedicine Pharmacokinetics?

Stephan T. Stern, Marilyn N. Martinez and David M. Stevens
Drug Metabolism and Disposition December 2016, 44 (12) 1934-1939; DOI: https://doi.org/10.1124/dmd.116.073148
Stephan T. Stern
Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland (S.T.S., D.M.S.); and Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland (M.N.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marilyn N. Martinez
Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland (S.T.S., D.M.S.); and Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland (M.N.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David M. Stevens
Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland (S.T.S., D.M.S.); and Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland (M.N.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nanoformulations have become important tools for modifying drug disposition, be it from the perspective of enabling prolonged drug release, protecting the drug molecule from metabolism, or achieving targeted delivery. When examining the in vivo pharmacokinetic properties of these formulations, most investigations either focus on systemic concentrations of total (encapsulated plus unencapsulated) drug, or concentrations of encapsulated and unencapsulated drug. However, it is rare to find studies that differentiate between protein-bound and unbound (free) forms of the unencapsulated drug. In light of the unique attributes of these formulations, we cannot simply assume it appropriate to rely upon the protein-binding properties of the traditionally formulated or legacy drug when trying to define the pharmacokinetic or pharmacokinetic/pharmacodynamic characteristics of these nanoformulations. Therefore, this commentary explores reasons why it is important to consider not only unencapsulated drug, but also the portion of unencapsulated drug that is not bound to plasma proteins. Specifically, we highlight those situations when it may be necessary to include measurement of unencapsulated, unbound drug concentrations as part of the nanoformulation pharmacokinetic evaluation.

Footnotes

    • Received August 11, 2016.
    • Accepted September 23, 2016.
  • This work was supported in whole or in part with federal funds from the National Institutes of Health National Cancer Institute [Grant HHSN261200800e001E].

  • Leidos Biomedical Research is a subcontractor of National Institutes of Health.

  • dx.doi.org/10.1124/dmd.116.073148.

  • U.S. Government work not protected by U.S. copyright
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (12)
Drug Metabolism and Disposition
Vol. 44, Issue 12
1 Dec 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
When Is It Important to Measure Unbound Drug in Evaluating Nanomedicine Pharmacokinetics?
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCommentary

When Is Unbound Drug Important in Evaluating Nanomedicine PK?

Stephan T. Stern, Marilyn N. Martinez and David M. Stevens
Drug Metabolism and Disposition December 1, 2016, 44 (12) 1934-1939; DOI: https://doi.org/10.1124/dmd.116.073148

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCommentary

When Is Unbound Drug Important in Evaluating Nanomedicine PK?

Stephan T. Stern, Marilyn N. Martinez and David M. Stevens
Drug Metabolism and Disposition December 1, 2016, 44 (12) 1934-1939; DOI: https://doi.org/10.1124/dmd.116.073148
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Traditional Protein-Binding PK Paradigms
    • Nanoparticle PK
    • Equilibrium Formulations
    • Redefining Biologically Active Drug Fraction and Its Impact on the PK/PD of Nanoformulations
    • Debating the Question: When Unbound Fractions May Need to be Considered
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • kcat Assessment of UGT Enzymes across Different Organs
  • Clearance Models: The Case for Status Quo
  • Reporting Data Analysis and Statistical Methods
Show more Commentary

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics