Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Modeling Therapeutic Antibody–Small Molecule Drug-Drug Interactions Using a Three-Dimensional Perfusable Human Liver Coculture Platform

Thomas J. Long, Patrick A. Cosgrove, Robert T. Dunn II, Donna B. Stolz, Hisham Hamadeh, Cynthia Afshari, Helen McBride and Linda G. Griffith
Drug Metabolism and Disposition December 2016, 44 (12) 1940-1948; DOI: https://doi.org/10.1124/dmd.116.071456
Thomas J. Long
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick A. Cosgrove
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert T. Dunn II
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donna B. Stolz
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hisham Hamadeh
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cynthia Afshari
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Helen McBride
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Linda G. Griffith
Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Traditional in vitro human liver cell culture models lose key hepatic functions such as metabolic activity during short-term culture. Advanced three-dimensional (3D) liver coculture platforms offer the potential for extended hepatocyte functionality and allow for the study of more complex biologic interactions, which can improve and refine human drug safety evaluations. Here, we use a perfusion flow 3D microreactor platform for the coculture of cryopreserved primary human hepatocytes and Kupffer cells to study the regulation of cytochrome P450 3A4 isoform (CYP3A4) activity by chronic interleukin 6 (IL-6)–mediated inflammation over 2 weeks. Hepatocyte cultures remained stable over 2 weeks, with consistent albumin production and basal IL-6 levels. Direct IL-6 stimulation that mimics an inflammatory state induced a dose-dependent suppression of CYP3A4 activity, an increase in C-reactive protein (CRP) secretion, and a decrease in shed soluble interleukin-6 receptor (IL-6R) levels, indicating expected hepatic IL-6 bioactivity. Tocilizumab, an anti-IL-6R monoclonal antibody used to treat rheumatoid arthritis, has been demonstrated clinically to impact small molecule drug pharmacokinetics by modulating cytochrome P450 enzyme activities, an effect not observed in traditional hepatic cultures. We have now recapitulated the clinical observation in a 3D bioreactor system. Tocilizumab was shown to desuppress CYP3A4 activity while reducing the CRP concentration after 72 hours in the continued presence of IL-6. This change in CYP3A4 activity decreased the half-life and area under the curve up to the last measurable concentration (AUClast) of the small molecule CYP3A4 substrate simvastatin hydroxy acid, measured before and after tocilizumab treatment. We conclude that next-generation in vitro liver culture platforms are well suited for these types of long-term treatment studies and show promise for improved drug safety assessment.

Footnotes

    • Received June 21, 2016.
    • Accepted September 8, 2016.
  • This work was partly supported by the United States Defense Advanced Research Projects Agency (DARPA) [W911NF-12-2-0039] and by the National Institutes of Health [UH3TR000496].

  • dx.doi.org/10.1124/dmd.116.071456.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (12)
Drug Metabolism and Disposition
Vol. 44, Issue 12
1 Dec 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modeling Therapeutic Antibody–Small Molecule Drug-Drug Interactions Using a Three-Dimensional Perfusable Human Liver Coculture Platform
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Inflammation-Mediated DDI in 3D Liver Bioreactor

Thomas J. Long, Patrick A. Cosgrove, Robert T. Dunn, Donna B. Stolz, Hisham Hamadeh, Cynthia Afshari, Helen McBride and Linda G. Griffith
Drug Metabolism and Disposition December 1, 2016, 44 (12) 1940-1948; DOI: https://doi.org/10.1124/dmd.116.071456

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Inflammation-Mediated DDI in 3D Liver Bioreactor

Thomas J. Long, Patrick A. Cosgrove, Robert T. Dunn, Donna B. Stolz, Hisham Hamadeh, Cynthia Afshari, Helen McBride and Linda G. Griffith
Drug Metabolism and Disposition December 1, 2016, 44 (12) 1940-1948; DOI: https://doi.org/10.1124/dmd.116.071456
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Adipocyte PXR does not play an essential role in obesity.
  • CYP3A-mediated oxidation of DABE and BIBR0951
  • Biodistribution of Lipid in Rats
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics