Abstract
Hydrolysis by lactase-phloridzin hydrolase (LPH) is the first and critical step in the absorption of isoflavonoid glucosides. However, the absorption characteristics of calycosin-7-O-β-d-glucoside (CG) slightly differ from other isoflavonoid glucosides. In this study, we used the rat intestinal perfusion model and performed pharmacokinetic studies and in vitro experiments to determine the factors influencing CG absorption and disposition. After oral administration of isoflavonoid glucosides, LPH was found to play minimal or no role on the hydrolysis of CG, in contrast to that of daidzin. CG was mainly transported into the small intestinal cells by sodium-dependent glucose transporter 1 (SGLT-1) as intact. This pathway could be the main mechanism underlying the high permeability of CG in the small intestine. CG was likely to be hydrolyzed in enterocytes to its aglycone calycosin by broad-specific β-glucuronides (BSβG) and glucocerebrosidase or rapidly metabolized. Calycosin was also rapidly and extensively metabolized to 3′-glucuronide in the enterocytes and liver, and the glucuronidation rates of calycosin and CG were much higher in the former. The metabolites were also transported into lumen by breast cancer resistance protein and multidrug resistance-associated protein 2. In conclusion, the enterocytes could be an important site for CG absorption, deglycosylation, and metabolism in rats. This study could contribute to the theoretical foundation and mechanism of absorption and disposition of flavonoid compounds.
Footnotes
- Received August 31, 2015.
- Accepted December 10, 2015.
This work was financially supported by the grants of National Natural Science Foundation of China [Grant No. 81120108025], Science and Technology Project of Guangzhou City [Grant No. 201509010004] and Guangdong Natural Science Foundation [Grant No. 2015A030312012].
↵
This article has supplemental material available at (dmd.aspetjournals.org).
- Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|