Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

In Vitro–In Vivo Extrapolation Scaling Factors for Intestinal P-Glycoprotein and Breast Cancer Resistance Protein: Part I: A Cross-Laboratory Comparison of Transporter-Protein Abundances and Relative Expression Factors in Human Intestine and Caco-2 Cells

Matthew D. Harwood, Brahim Achour, Sibylle Neuhoff, Matthew R. Russell, Gordon Carlson, Geoffrey Warhurst and Amin Rostami-Hodjegan
Drug Metabolism and Disposition March 2016, 44 (3) 297-307; DOI: https://doi.org/10.1124/dmd.115.067371
Matthew D. Harwood
Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brahim Achour
Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sibylle Neuhoff
Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew R. Russell
Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon Carlson
Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Geoffrey Warhurst
Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amin Rostami-Hodjegan
Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Over the last 5 years the quantification of transporter-protein absolute abundances has dramatically increased in parallel to the expanded use of in vitro–in vivo extrapolation (IVIVE) and physiologically based pharmacokinetics (PBPK)-linked models, for decision-making in pharmaceutical company drug development pipelines and regulatory submissions. Although several research groups have developed laboratory-specific proteomic workflows, it is unclear if the large range of reported variability is founded on true interindividual variability or experimental variability resulting from sample preparation or the proteomic methodology used. To assess the potential for methodological bias on end-point abundance quantification, two independent laboratories, the University of Manchester (UoM) and Bertin Pharma (BPh), employing different proteomic workflows, quantified the absolute abundances of Na/K-ATPase, P-gp, and breast cancer resistance protein (BCRP) in the same set of biologic samples from human intestinal and Caco-2 cell membranes. Across all samples, P-gp abundances were significantly correlated (P = 0.04, Rs = 0.72) with a 2.4-fold higher abundance (P = 0.001) generated at UoM compared with BPh. There was a systematically higher BCRP abundance in Caco-2 cell samples quantified by BPh compared with UoM, but not in human intestinal samples. Consequently, a similar intestinal relative expression factor (REF), derived from distal jejunum and Caco-2 monolayer samples, between laboratories was found for P-gp. However, a 2-fold higher intestinal REF was generated by UoM (2.22) versus BPh (1.11). We demonstrate that differences in absolute protein abundance are evident between laboratories and they probably result from laboratory-specific methodologies relating to peptide choice.

Footnotes

    • Received September 25, 2015.
    • Accepted December 1, 2015.
  • This study was supported by an Industrial Fellows Grant awarded to M.D. Harwood from The Royal Commission for Exhibition of 1851, which has contributed to OrBiTo IMI project (http://www.imi.europa.eu/content/orbito) as a side-ground. Manchester Pharmacy School, The University of Manchester, funded work undertaken by B. Achour and M.R. Russell.

  • dx.doi.org/10.1124/dmd.115.067371.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (3)
Drug Metabolism and Disposition
Vol. 44, Issue 3
1 Mar 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In Vitro–In Vivo Extrapolation Scaling Factors for Intestinal P-Glycoprotein and Breast Cancer Resistance Protein: Part I: A Cross-Laboratory Comparison of Transporter-Protein Abundances and Relative Expression Factors in Human Intestine and Caco-2 Cells
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

IVIVE Scalars for Intestinal Transporters

Matthew D. Harwood, Brahim Achour, Sibylle Neuhoff, Matthew R. Russell, Gordon Carlson, Geoffrey Warhurst and Amin Rostami-Hodjegan
Drug Metabolism and Disposition March 1, 2016, 44 (3) 297-307; DOI: https://doi.org/10.1124/dmd.115.067371

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

IVIVE Scalars for Intestinal Transporters

Matthew D. Harwood, Brahim Achour, Sibylle Neuhoff, Matthew R. Russell, Gordon Carlson, Geoffrey Warhurst and Amin Rostami-Hodjegan
Drug Metabolism and Disposition March 1, 2016, 44 (3) 297-307; DOI: https://doi.org/10.1124/dmd.115.067371
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Functional Characterization of 29 CYP4F2 Variants
  • Exposure-toxicity relation of apatinib
  • ABC phenomenon potentiates anti-HCC efficacy
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics