Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

CYP267A1 and CYP267B1 from Sorangium cellulosum So ce56 are Highly Versatile Drug Metabolizers

Fredy Kern, Yogan Khatri, Martin Litzenburger and Rita Bernhardt
Drug Metabolism and Disposition April 2016, 44 (4) 495-504; DOI: https://doi.org/10.1124/dmd.115.068486
Fredy Kern
Department of Biochemistry, Saarland University, Saarbruecken, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yogan Khatri
Department of Biochemistry, Saarland University, Saarbruecken, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin Litzenburger
Department of Biochemistry, Saarland University, Saarbruecken, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rita Bernhardt
Department of Biochemistry, Saarland University, Saarbruecken, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The guidelines of the Food and Drug Administration and International Conference on Harmonization have highlighted the importance of drug metabolites in clinical trials. As a result, an authentic source for their production is of great interest, both for their potential application as analytical standards and for required toxicological testing. Since we have previously shown promising biotechnological potential of cytochromes P450 from the soil bacterium Sorangium cellulosum So ce56, herein we investigated the CYP267 family and its application for the conversion of commercially available drugs including nonsteroidal anti-inflammatory, antitumor, and antihypotensive drugs. The CYP267 family, especially CYP267B1, revealed the interesting ability to convert a broad range of substrates. We established substrate-dependent extraction protocols and also optimized the reaction conditions for the in vitro experiments and Escherichia coli–based whole-cell bioconversions. We were able to detect activity of CYP267A1 toward seven out of 22 drugs and the ability of CYP267B1 to convert 14 out of 22 drugs. Moderate to high conversions (up to 85% yield) were observed in our established whole-cell system using CYP267B1 and expressing the autologous redox partners, ferredoxin 8 and ferredoxin-NADP+ reductase B. With our existing setup, we present a system capable of producing reasonable quantities of the human drug metabolites 4′-hydroxydiclofenac, 2-hydroxyibuprofen, and omeprazole sulfone. Due to the great potential of converting a broad range of substrates, wild-type CYP267B1 offers a wide scope for the screening of further substrates, which will draw further attention to future biotechnological usage of CYP267B1 from S. cellulosum So ce56.

Footnotes

    • Received November 19, 2015.
    • Accepted February 2, 2016.
  • This work was supported by Deutsche Forschungsgemeinschaft [Grant Be1343/23].

  • This manuscript describes original work and is not under consideration by any other journal. All authors approved the manuscript and this submission. The authors declare no competing financial interests.

  • dx.doi.org/10.1124/dmd.115.068486.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (4)
Drug Metabolism and Disposition
Vol. 44, Issue 4
1 Apr 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
CYP267A1 and CYP267B1 from Sorangium cellulosum So ce56 are Highly Versatile Drug Metabolizers
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

CYP267A1 and CYP267B1 Are Highly Versatile Drug Metabolizers

Fredy Kern, Yogan Khatri, Martin Litzenburger and Rita Bernhardt
Drug Metabolism and Disposition April 1, 2016, 44 (4) 495-504; DOI: https://doi.org/10.1124/dmd.115.068486

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

CYP267A1 and CYP267B1 Are Highly Versatile Drug Metabolizers

Fredy Kern, Yogan Khatri, Martin Litzenburger and Rita Bernhardt
Drug Metabolism and Disposition April 1, 2016, 44 (4) 495-504; DOI: https://doi.org/10.1124/dmd.115.068486
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ontogeny of CPPGL
  • Expression of AKR and SDR Isoforms in the Human Intestine
  • Interaction of Human OATP1B1 with PDZK1
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics