Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Glycyrrhizin Protects against Acetaminophen-Induced Acute Liver Injury via Alleviating Tumor Necrosis Factor α–Mediated Apoptosis

Tingting Yan, Hong Wang, Min Zhao, Tomoki Yagai, Yingying Chai, Kristopher W. Krausz, Cen Xie, Xuefang Cheng, Jun Zhang, Yuan Che, Feiyan Li, Yuzheng Wu, Chad N. Brocker, Frank J. Gonzalez, Guangji Wang and Haiping Hao
Drug Metabolism and Disposition May 2016, 44 (5) 720-731; DOI: https://doi.org/10.1124/dmd.116.069419
Tingting Yan
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Wang
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Min Zhao
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomoki Yagai
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yingying Chai
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristopher W. Krausz
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cen Xie
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xuefang Cheng
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Zhang
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuan Che
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Feiyan Li
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuzheng Wu
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chad N. Brocker
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank J. Gonzalez
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guangji Wang
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haiping Hao
State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China (Ti.Y., H.W., M.Z., Yi.C., X.C., J.Z., Yu.C., F.L., Y.W., G.W., H.H.); Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Ti.Y., To.Y., K.W.K., C.X., C.N.B., F.J.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in Western countries. Glycyrrhizin (GL), a potent hepatoprotective constituent extracted from the traditional Chinese medicine liquorice, has potential clinical use in treating APAP-induced liver failure. The present study determined the hepatoprotective effects and underlying mechanisms of action of GL and its active metabolite glycyrrhetinic acid (GA). Various administration routes and pharmacokinetics–pharmacodynamics analyses were used to differentiate the effects of GL and GA on APAP toxicity in mice. Mice deficient in cytochrome P450 2E1 enzyme (CYP2E1) or receptor interacting protein 3 (RIPK3) and their relative wild-type littermates were subjected to histologic and biochemical analyses to determine the potential mechanisms. Hepatocyte death mediated by tumor necrosis factor α (TNFα)/caspase was analyzed by use of human liver-derived LO2 cells. The pharmacokinetics–pharmacodynamics analysis using various administration routes revealed that GL but not GA potently attenuated APAP-induced liver injury. The protective effect of GL was found only with intraperitoneal and intravenous administration and not with gastric administration. CYP2E1-mediated metabolic activation and RIPK3-mediated necroptosis were unrelated to GL’s protective effect. However, GL inhibited hepatocyte apoptosis via interference with TNFα-induced apoptotic hepatocyte death. These results demonstrate that GL rapidly attenuates APAP-induced liver injury by directly inhibiting TNFα-induced hepatocyte apoptosis. The protective effect against APAP-induced liver toxicity by GL in mice suggests the therapeutic potential of GL for the treatment of APAP overdose.

Footnotes

    • Received January 13, 2016.
    • Accepted March 9, 2016.
  • This work was supported by the Intramural Research Program of the National Institutes of Health National Cancer Institute and China Scholarship Council [No. 201407060024] and the National Natural Science Foundation of China [No. 81430091, 81325025, and 81273586]. The authors declare no conflicts of interest.

  • dx.doi.org/10.1124/dmd.116.069419.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • U.S. Government work not protected by U.S. copyright
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (5)
Drug Metabolism and Disposition
Vol. 44, Issue 5
1 May 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Glycyrrhizin Protects against Acetaminophen-Induced Acute Liver Injury via Alleviating Tumor Necrosis Factor α–Mediated Apoptosis
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Hepatoprotective Effect of Glycyrrhizin

Tingting Yan, Hong Wang, Min Zhao, Tomoki Yagai, Yingying Chai, Kristopher W. Krausz, Cen Xie, Xuefang Cheng, Jun Zhang, Yuan Che, Feiyan Li, Yuzheng Wu, Chad N. Brocker, Frank J. Gonzalez, Guangji Wang and Haiping Hao
Drug Metabolism and Disposition May 1, 2016, 44 (5) 720-731; DOI: https://doi.org/10.1124/dmd.116.069419

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Hepatoprotective Effect of Glycyrrhizin

Tingting Yan, Hong Wang, Min Zhao, Tomoki Yagai, Yingying Chai, Kristopher W. Krausz, Cen Xie, Xuefang Cheng, Jun Zhang, Yuan Che, Feiyan Li, Yuzheng Wu, Chad N. Brocker, Frank J. Gonzalez, Guangji Wang and Haiping Hao
Drug Metabolism and Disposition May 1, 2016, 44 (5) 720-731; DOI: https://doi.org/10.1124/dmd.116.069419
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics