Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationSpecial Section on Pediatric Drug Disposition and Pharmacokinetics—Short Communication

Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers

Jamie E. Moscovitz, Muna S. Nahar, Stuart L. Shalat, Angela L. Slitt, Dana C. Dolinoy and Lauren M. Aleksunes
Drug Metabolism and Disposition July 2016, 44 (7) 1061-1065; DOI: https://doi.org/10.1124/dmd.115.068668
Jamie E. Moscovitz
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Muna S. Nahar
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stuart L. Shalat
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angela L. Slitt
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dana C. Dolinoy
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lauren M. Aleksunes
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (J.E.M., L.M.A.); Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan (M.S.N., D.C.D.); Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia (S.L.S.); Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey (S.L.S.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (S.L.S., L.M.A.); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S.); and Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan (D.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r2 values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2–related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites.

Footnotes

    • Received November 30, 2015.
    • Accepted February 4, 2016.
  • This research was supported by the National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development [Grant F31HD082965]; the National Institutes of Health National Institute of Environmental Health Sciences [Grants P30ES002022, P30ES017885, R01ES020522, R01ES017524, T32ES007148, and T32ES007062]; and the American Foundation for Pharmaceutical Education [Predoctoral Fellowship in Pharmaceutical Science].

  • dx.doi.org/10.1124/dmd.115.068668.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (7)
Drug Metabolism and Disposition
Vol. 44, Issue 7
1 Jul 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationSpecial Section on Pediatric Drug Disposition and Pharmacokinetics—Short Communication

BPA and Efflux Transporters in Fetal Livers

Jamie E. Moscovitz, Muna S. Nahar, Stuart L. Shalat, Angela L. Slitt, Dana C. Dolinoy and Lauren M. Aleksunes
Drug Metabolism and Disposition July 1, 2016, 44 (7) 1061-1065; DOI: https://doi.org/10.1124/dmd.115.068668

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationSpecial Section on Pediatric Drug Disposition and Pharmacokinetics—Short Communication

BPA and Efflux Transporters in Fetal Livers

Jamie E. Moscovitz, Muna S. Nahar, Stuart L. Shalat, Angela L. Slitt, Dana C. Dolinoy and Lauren M. Aleksunes
Drug Metabolism and Disposition July 1, 2016, 44 (7) 1061-1065; DOI: https://doi.org/10.1124/dmd.115.068668
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Age-Dependent Hepatocellularity in Rat
  • PXR Expression in Pediatric Crohn’s
Show more Special Section on Pediatric Drug Disposition and Pharmacokinetics—Short Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics