Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats

Xin Zhou, Luc R. A. Rougée, David W. Bedwell, Jeff W. Cramer, Michael A. Mohutsky, Nathan A. Calvert, Richard D. Moulton, Kenneth C. Cassidy, Nathan P. Yumibe, Lisa A. Adams and Kenneth J. Ruterbories
Drug Metabolism and Disposition August 2016, 44 (8) 1184-1192; DOI: https://doi.org/10.1124/dmd.116.070623
Xin Zhou
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luc R. A. Rougée
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David W. Bedwell
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeff W. Cramer
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael A. Mohutsky
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan A. Calvert
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard D. Moulton
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth C. Cassidy
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan P. Yumibe
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa A. Adams
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth J. Ruterbories
Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The Zucker diabetic fatty (ZDF) rat, an inbred strain of obese Zucker fatty rat, develops early onset of insulin resistance and displays hyperglycemia and hyperlipidemia. The phenotypic changes resemble human type 2 diabetes associated with obesity and therefore the strain is used as a pharmacological model for type 2 diabetes. The aim of the current study was to compare the pharmacokinetics and hepatic metabolism in male ZDF and Sprague-Dawley (SD) rats of five antidiabetic drugs that are known to be cleared via various mechanisms. Among the drugs examined, metformin, cleared through renal excretion, and rosiglitazone, metabolized by hepatic cytochrome P450 2C, did not exhibit differences in the plasma clearance in ZDF and SD rats. In contrast, glibenclamide, metabolized by hepatic CYP3A, canagliflozin, metabolized mainly by UDP-glucuronosyltransferases (UGT), and troglitazone, metabolized by sulfotransferase and UGT, exhibited significantly lower plasma clearance in ZDF than in SD rats after a single intravenous administration. To elucidate the mechanisms for the difference in the drug clearance, studies were performed to characterize the activity of hepatic drug–metabolizing enzymes using liver S9 fractions from the two strains. The results revealed that the activity for CYP3A and UGT was decreased in ZDF rats using the probe substrates, and decreased unbound intrinsic clearance in vitro for glibenclamide, canagliflozin, and troglitazone was consistent with lower plasma clearance in vivo. The difference in pharmacokinetics of these two strains may complicate pharmacokinetic/pharmacodynamic correlations, given that ZDF is used as a pharmacological model, and SD rat as the pharmacokinetics and toxicology strain.

Footnotes

    • Received March 22, 2016.
    • Accepted May 20, 2016.
  • dx.doi.org/10.1124/dmd.116.070623.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 44 (8)
Drug Metabolism and Disposition
Vol. 44, Issue 8
1 Aug 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

PK and Hepatic Metabolism in Zucker Diabetic Fatty Rat

Xin Zhou, Luc R. A. Rougée, David W. Bedwell, Jeff W. Cramer, Michael A. Mohutsky, Nathan A. Calvert, Richard D. Moulton, Kenneth C. Cassidy, Nathan P. Yumibe, Lisa A. Adams and Kenneth J. Ruterbories
Drug Metabolism and Disposition August 1, 2016, 44 (8) 1184-1192; DOI: https://doi.org/10.1124/dmd.116.070623

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

PK and Hepatic Metabolism in Zucker Diabetic Fatty Rat

Xin Zhou, Luc R. A. Rougée, David W. Bedwell, Jeff W. Cramer, Michael A. Mohutsky, Nathan A. Calvert, Richard D. Moulton, Kenneth C. Cassidy, Nathan P. Yumibe, Lisa A. Adams and Kenneth J. Ruterbories
Drug Metabolism and Disposition August 1, 2016, 44 (8) 1184-1192; DOI: https://doi.org/10.1124/dmd.116.070623
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
  • Gene expression profile of human intestinal epithelial cells
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics