Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu5-Negative Allosteric Modulator VU0424238 (Auglurant)

Rachel D. Crouch, Anna L. Blobaum, Andrew S. Felts, P. Jeffrey Conn and Craig W. Lindsley
Drug Metabolism and Disposition December 2017, 45 (12) 1245-1259; DOI: https://doi.org/10.1124/dmd.117.077552
Rachel D. Crouch
Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), Departments of Pharmacology (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), and Chemistry (C.W.L.), Vanderbilt University School of Medicine, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anna L. Blobaum
Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), Departments of Pharmacology (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), and Chemistry (C.W.L.), Vanderbilt University School of Medicine, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew S. Felts
Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), Departments of Pharmacology (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), and Chemistry (C.W.L.), Vanderbilt University School of Medicine, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Jeffrey Conn
Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), Departments of Pharmacology (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), and Chemistry (C.W.L.), Vanderbilt University School of Medicine, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Craig W. Lindsley
Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), Departments of Pharmacology (R.D.C., A.L.B., A.S.F., P.J.C., C.W.L.), and Chemistry (C.W.L.), Vanderbilt University School of Medicine, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Aldehyde oxidase (AO) and xanthine oxidase (XO) are molybdo-flavoenzymes that catalyze oxidation of aromatic azaheterocycles. Differences in AO activity have been reported among various species, including rats, humans, and monkeys. Herein we report a species difference in the enzymes responsible for the metabolism of the negative allosteric modulator of metabotropic glutamate receptor subtype 5 (mGlu5 NAM) VU0424238 (VU238, auglurant). Hepatic S9 incubations with AO and XO specific inhibitors hydralazine and allopurinol indicated that rats and cynomolgus monkeys both oxidized VU238 to the 6-oxopyrimidine metabolite M1 via an AO-mediated pathway, whereas secondary oxidation to the 2,6-dioxopyrimidine metabolite M2 was mediated predominantly by AO in monkeys and XO in rats. Despite differences in enzymatic pathways, intrinsic clearance (CLint) of M1 was similar between species (cynomolgus and rat CLint = 2.00 ± 0.040 and 2.19 ± 0.201 μl/min per milligram of protein, respectively). Inhibitor studies in the S9 of multiple species indicated that oxidation of VU238 to M1 was mediated predominantly by AO in humans, cynomolgus and rhesus monkeys, rats, mice, guinea pigs, and minipigs. Oxidation of M1 to M2 was mediated predominantly by XO in rats and mice and by AO in monkeys and guinea pigs, whereas low turnover prevented enzyme phenotyping in humans and minipigs. Additionally, inhibitor experiments indicated that oxidation at the 2-position of the pyrimidine ring of the known AO substrate, BIBX1382, was mediated by AO in all species, although production of this metabolite was comparatively low in rats and mice. These data may suggest low reactivity of rat AO toward 2-oxidation of pyrimidine-containing compounds and highlight the importance of thoroughly characterizing AO-metabolized drug candidates in multiple preclinical species.

Footnotes

    • Received July 12, 2017.
    • Accepted September 20, 2017.
  • https://doi.org/10.1124/dmd.117.077552.

  • ↵This article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 45 (12)
Drug Metabolism and Disposition
Vol. 45, Issue 12
1 Dec 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu5-Negative Allosteric Modulator VU0424238 (Auglurant)
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Species-Specific Metabolism by Molybdenum Hydroxylases

Rachel D. Crouch, Anna L. Blobaum, Andrew S. Felts, P. Jeffrey Conn and Craig W. Lindsley
Drug Metabolism and Disposition December 1, 2017, 45 (12) 1245-1259; DOI: https://doi.org/10.1124/dmd.117.077552

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Species-Specific Metabolism by Molybdenum Hydroxylases

Rachel D. Crouch, Anna L. Blobaum, Andrew S. Felts, P. Jeffrey Conn and Craig W. Lindsley
Drug Metabolism and Disposition December 1, 2017, 45 (12) 1245-1259; DOI: https://doi.org/10.1124/dmd.117.077552
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • BSEP Function in Suspension Hepatocytes
  • Role of AADAC on eslicarbazepine acetate hydrolysis
  • Candesartan glucuronide serves as a CYP2C8 inhibitor
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics