Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleMinireview

Organic Anion Transporter 2: An Enigmatic Human Solute Carrier

Hong Shen, Yurong Lai and A. David Rodrigues
Drug Metabolism and Disposition February 2017, 45 (2) 228-236; DOI: https://doi.org/10.1124/dmd.116.072264
Hong Shen
Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yurong Lai
Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yurong Lai
A. David Rodrigues
Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

As a member of the solute carrier 22A (SLC22A) family, organic anion transporter 2 (OAT2; SLC22A7) is emerging as an important drug transporter because of its expression in both the liver and kidney, two major eliminating organs, and its ability to transport not only a wide variety of xenobiotics but also numerous physiologically important endogenous compounds, like creatinine and cGMP. However, OAT2 has received relatively little attention compared with other OATs and solute carriers (SLCs), like organic cation transporters, sodium-dependent taurocholate cotransporting polypeptide, multidrug and toxin extrusion proteins, and organic anion-transporting polypeptides. Overall, the literature describing OAT2 is rapidly evolving, with numerous publications contradicting each other regarding the transport mechanism, tissue distribution, and transport of creatinine and cGMP, two important endogenous OAT2 substrates. Despite its status as a liver and kidney SLC, tools for assessing its activity and inhibition are lacking, and its role in drug disposition and elimination remains to be defined. The current review focuses on the available and emerging literature describing OAT2. We envision that OAT2 will gain more prominence as its expression, substrate, and inhibitor profile is investigated further and compared with other SLCs.

Footnotes

    • Received June 27, 2016.
    • Accepted November 17, 2016.
  • dx.doi.org/10.1124/dmd.116.072264.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 45 (2)
Drug Metabolism and Disposition
Vol. 45, Issue 2
1 Feb 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Organic Anion Transporter 2: An Enigmatic Human Solute Carrier
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMinireview

OAT2 as a Membrane Transporter of Emerging Importance

Hong Shen, Yurong Lai and A. David Rodrigues
Drug Metabolism and Disposition February 1, 2017, 45 (2) 228-236; DOI: https://doi.org/10.1124/dmd.116.072264

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleMinireview

OAT2 as a Membrane Transporter of Emerging Importance

Hong Shen, Yurong Lai and A. David Rodrigues
Drug Metabolism and Disposition February 1, 2017, 45 (2) 228-236; DOI: https://doi.org/10.1124/dmd.116.072264
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Relatively Well Understood Aspects of OAT2
    • Enigmatic Aspects of OAT2
    • Conclusions and Outlook
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Activation/ inactivation of anticancer drugs by CYP3A4
  • Human Blood-Testis Barrier Transporters
  • Clinical Pharmacology of FDA-Approved Small Interfering RNAs
Show more Minireview

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics