Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Assessing the Risk of Drug-Induced Cholestasis Using Unbound Intrahepatic Concentrations

Julia Riede, Birk Poller, Jörg Huwyler and Gian Camenisch
Drug Metabolism and Disposition May 2017, 45 (5) 523-531; DOI: https://doi.org/10.1124/dmd.116.074179
Julia Riede
Division of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.R., B.P., G.C.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (J.R., J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Birk Poller
Division of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.R., B.P., G.C.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (J.R., J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jörg Huwyler
Division of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.R., B.P., G.C.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (J.R., J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gian Camenisch
Division of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.R., B.P., G.C.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (J.R., J.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Inhibition of the bile salt export pump (BSEP) has been recognized as a key factor in the development of drug-induced cholestasis (DIC). The risk of DIC in humans has been previously assessed using in vitro BSEP inhibition data (IC50) and unbound systemic drug exposure under assumption of the “free drug hypothesis.” This concept, however, is unlikely valid, as unbound intrahepatic drug concentrations are affected by active transport and metabolism. To investigate this hypothesis, we experimentally determined the in vitro liver-to-blood partition coefficients (Kpuu) for 18 drug compounds using the hepatic extended clearance model (ECM). In vitro–in vivo translatability of Kpuu values was verified for a subset of compounds in rat. Consequently, unbound intrahepatic concentrations were calculated from clinical exposure (systemic and hepatic inlet) and measured Kpuu data. Using these values, corresponding safety margins against BSEP IC50 values were determined and compared with the clinical incidence of DIC. Depending on the ECM class of a drug, in vitro Kpuu values deviated up to 14-fold from unity, and unbound intrahepatic concentrations were affected accordingly. The use of in vitro Kpuu-based safety margins allowed separation of clinical cholestasis frequency into three classes (no cholestasis, cholestasis in ≤2%, and cholestasis in >2% of subjects) for 17 out of 18 compounds. This assessment was significantly superior compared with using unbound extracellular concentrations as a surrogate for intrahepatic concentrations. Furthermore, the assessment of Kpuu according to ECM provides useful guidance for the quantitative evaluation of genetic and physiologic risk factors for the development of cholestasis.

Footnotes

    • Received November 16, 2016.
    • Accepted March 1, 2017.
  • https://doi.org/10.1124/dmd.116.074179.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 45 (5)
Drug Metabolism and Disposition
Vol. 45, Issue 5
1 May 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Assessing the Risk of Drug-Induced Cholestasis Using Unbound Intrahepatic Concentrations
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Unbound Intrahepatic Drug Concentrations Predict Cholestasis

Julia Riede, Birk Poller, Jörg Huwyler and Gian Camenisch
Drug Metabolism and Disposition May 1, 2017, 45 (5) 523-531; DOI: https://doi.org/10.1124/dmd.116.074179

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Unbound Intrahepatic Drug Concentrations Predict Cholestasis

Julia Riede, Birk Poller, Jörg Huwyler and Gian Camenisch
Drug Metabolism and Disposition May 1, 2017, 45 (5) 523-531; DOI: https://doi.org/10.1124/dmd.116.074179
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CYP3A-mediated oxidation of DABE and BIBR0951
  • Adipocyte PXR does not play an essential role in obesity.
  • Biodistribution of Lipid in Rats
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics