Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Optimization of Canalicular ABC Transporter Function in HuH-7 Cells by Modification of Culture Conditions

Hee Eun Kang, Melina M. Malinen, Chitra Saran, Paavo Honkakoski and Kim L.R. Brouwer
Drug Metabolism and Disposition October 2019, 47 (10) 1222-1230; DOI: https://doi.org/10.1124/dmd.119.087676
Hee Eun Kang
College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hee Eun Kang
Melina M. Malinen
College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chitra Saran
College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paavo Honkakoski
College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Paavo Honkakoski
Kim L.R. Brouwer
College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kim L.R. Brouwer
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Human hepatoma cell lines are useful for evaluation of drug-induced hepatotoxicity, hepatic drug disposition, and drug-drug interactions. However, their applicability is compromised by aberrant expression of hepatobiliary transporters. This study was designed to evaluate whether extracellular matrix (Matrigel) overlay and dexamethasone (DEX) treatment would support cellular maturation of long-term HuH-7 hepatoma cell cultures and improve the expression, localization, and activity of canalicular ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and bile salt export pump (BSEP/ABCB11). Matrigel overlay promoted the maturation of HuH-7 cells toward cuboidal, hepatocyte-like cells displaying bile canaliculi-like structures visualized by staining for filamentous actin (F-actin), colocalization of MRP2 with F-actin, and by accumulation of the MRP2 substrate 5(6)-carboxy-2′,7′-dichlorofluorescein (CDF) within the tubular canaliculi. The cellular phenotype was rather homogenous in the Matrigel-overlaid cultures, whereas the standard HuH-7 cultures contained both hepatocyte-like cells and flat epithelium-like cells. Only Matrigel-overlaid HuH-7 cells expressed MDR1 at the canaliculi and excreted the MDR1 probe substrate digoxin into biliary compartments. DEX treatment resulted in more elongated and branched canaliculi and restored canalicular expression and function of BSEP. These findings suggest that hepatocyte polarity, elongated canalicular structures, and proper localization and function of canalicular ABC transporters can be recovered, at least in part, in human hepatoma HuH-7 cells by applying the modified culture conditions.

SIGNIFICANCE STATEMENT We report the first demonstration that proper localization and function of canalicular ABC transporters can be recovered in human hepatoma HuH-7 cells by modification of cell culture conditions. Matrigel overlay and dexamethasone supplementation increased the proportion of hepatocyte-like cells, strongly augmented the canalicular structures between the cells, and restored the localization and function of key canalicular ABC transporters. These results will facilitate the development of reproducible, economical, and easily achievable liver cell models for drug development.

Footnotes

    • Received April 24, 2019.
    • Accepted July 19, 2019.
  • This work was supported by the National Institutes of Health National Institute of General Medical Sciences under Award Numbers R01 GM041935 and R35 GM122576 to Prof. K.L.R.B. Prof. H.E.K. was supported, in part, by a National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. 2019R1F1A1052243) and by the Catholic University of Korea, Research Fund, 2018. Dr. M.M.M. was supported, in part, by the Finnish Cultural Foundation and Orion Research Foundation. Prof. P.H. was supported in part by the ERASMUS+Global exchange program and the University of Eastern Finland. Disclosure: Dr. K.L.R.B. is a coinventor of the sandwich-cultured hepatocyte technology for quantification of biliary excretion (B-CLEAR) and related technologies, which have been licensed exclusively to Qualyst Transporter Solutions, recently acquired by BioIVT.

  • https://doi.org/10.1124/dmd.119.087676.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 47 (10)
Drug Metabolism and Disposition
Vol. 47, Issue 10
1 Oct 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Optimization of Canalicular ABC Transporter Function in HuH-7 Cells by Modification of Culture Conditions
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Canalicular ABC Transporters in HuH-7 Cells

Hee Eun Kang, Melina M. Malinen, Chitra Saran, Paavo Honkakoski and Kim L.R. Brouwer
Drug Metabolism and Disposition October 1, 2019, 47 (10) 1222-1230; DOI: https://doi.org/10.1124/dmd.119.087676

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Canalicular ABC Transporters in HuH-7 Cells

Hee Eun Kang, Melina M. Malinen, Chitra Saran, Paavo Honkakoski and Kim L.R. Brouwer
Drug Metabolism and Disposition October 1, 2019, 47 (10) 1222-1230; DOI: https://doi.org/10.1124/dmd.119.087676
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • In Vivo Functional Effects of CYP2C9 M1L
  • Clearance pathways: fevipiprant with probenecid perpetrator
  • Predicting Volume of Distribution from In Vitro Parameters
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics