Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle
Open Access

Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans

Terry Podoll, Paul G. Pearson, Jerry Evarts, Tim Ingallinera, Elena Bibikova, Hao Sun, Mark Gohdes, Kristen Cardinal, Mitesh Sanghvi and J. Greg Slatter
Drug Metabolism and Disposition February 2019, 47 (2) 145-154; DOI: https://doi.org/10.1124/dmd.118.084459
Terry Podoll
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul G. Pearson
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jerry Evarts
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tim Ingallinera
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elena Bibikova
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hao Sun
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Gohdes
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristen Cardinal
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mitesh Sanghvi
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Greg Slatter
Acerta Pharma, South San Francisco, California (T.P., J.E., T.I., E.B., J.G.S.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance, Madison, Wisconsin (H.S., M.G., K.C.); and Xceleron, Germantown, Maryland (M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography–tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib’s highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.

Footnotes

    • Received September 12, 2018.
    • Accepted November 7, 2018.
  • This work was supported by Acerta Pharma.

  • https://doi.org/10.1124/dmd.118.084459.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2019 by The Author(s)

This is an open access article distributed under the CC BY-NC Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 47 (2)
Drug Metabolism and Disposition
Vol. 47, Issue 2
1 Feb 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Bioavailability, Metabolism, and Excretion of [14C]Acalabrutinib

Terry Podoll, Paul G. Pearson, Jerry Evarts, Tim Ingallinera, Elena Bibikova, Hao Sun, Mark Gohdes, Kristen Cardinal, Mitesh Sanghvi and J. Greg Slatter
Drug Metabolism and Disposition February 1, 2019, 47 (2) 145-154; DOI: https://doi.org/10.1124/dmd.118.084459

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Bioavailability, Metabolism, and Excretion of [14C]Acalabrutinib

Terry Podoll, Paul G. Pearson, Jerry Evarts, Tim Ingallinera, Elena Bibikova, Hao Sun, Mark Gohdes, Kristen Cardinal, Mitesh Sanghvi and J. Greg Slatter
Drug Metabolism and Disposition February 1, 2019, 47 (2) 145-154; DOI: https://doi.org/10.1124/dmd.118.084459
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • BSEP Function in Suspension Hepatocytes
  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics