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ABSTRACT

Nonspecific drug partitioning into microsomal membranes must be
considered for in vitro-in vivo correlations. This work evaluated the
effect of including lipid partitioning in the analysis of complex TDI
kinetics with numerical methods. The covariance between lipid
partitioning and multiple inhibitor binding was evaluated. Simula-
tions were performed to test the impact of lipid partitioning on the
interpretation of TDI kinetics, and experimental TDI datasets for
paroxetine (PAR) and itraconazole (ITZ) were modeled. For most
kinetic schemes, modeling lipid partitioning results in statistically
better fits. For MM-IL simulations (KI,u = 0.1 mM, kinact = 0.1 minute21),
concurrent modeling of lipid partitioning for an fumic range (0.01, 0.1,
and 0.5) resulted in better fits compared with post hoc correc-
tion (AICc: 2526 vs. 2496, 2579 vs. 2499, and 2636 vs. 2579,

respectively). Similar results were obtained with EII-IL. Lipid parti-
tioning may be misinterpreted as double binding, leading to in-
correct parameter estimates. For the MM-IL datasets, when fumic =
0.02, MM-IL, and EII model fits were indistinguishable (dAICc = 3).
For less partitioned datasets (fumic = 0.1 or 0.5), the inclusion of
partitioning resulted in better models. The inclusion of lipid parti-
tioning can lead to markedly different estimates of KI,u and kinact. A
reasonable alternate experimental design is nondilution TDI assays,
with post hoc fumic incorporation. The best fit models for PAR (MIC-
M-IL) and ITZ (MIC-EII-M-IL and MIC-EII-M-Seq-IL) were consistent
with their reported mechanism and kinetics. Overall, experimental
fumic values should be concurrently incorporated into TDI models
with complex kinetics, when dilution protocols are used.

Introduction

Mechanism-based inhibition results in time-dependent inactivation
(TDI) of cytochrome P450 (P450) enzymes (Cohen et al., 1997; Mullins
et al., 1998; Galetin et al., 2006; Obach et al., 2006; Venkatakrishnan
and Obach, 2007; Watanabe et al., 2007; Zhou et al., 2007; Rowland
Yeo et al., 2011). TDI is a major cause of drug-drug interactions (DDIs),
and the potential for TDI is determined early in drug discovery
using in vitro microsomal TDI assays. These assays provide two key
parameters: KI, the affinity of the inactivator, and kinact, the inactivation
rate constant. The partitioning of drugs into microsomal membranes
(nonspecific partitioning) decreases free drug concentration, which
necessitates the measurement of fraction unbound in microsomes (fumic)
(Margolis and Obach, 2003; Nagar and Korzekwa, 2012). KI values
determined from microsomal TDI assays need to be corrected for

binding/partitioning to obtain unbound parameters [e.g., unbound KI

(KI,u)]. There are several studies reported in the literature demonstrat-
ing the importance of correction of microsomal binding and its effect
on predicted pharmacokinetic parameters (Obach, 1997, 1999; McLure
et al., 2000; Kalvass et al., 2001; Austin et al., 2002; Margolis and
Obach, 2003; Nagar and Korzekwa, 2012; Waters et al., 2014). Drugs
can range from very highly partitioned compounds [e.g., itraconazole
(ITZ) and amiodarone] (Ishigam et al., 2001; Isoherranen et al., 2004;
Galetin et al., 2005) tominimally partitioned compounds (e.g., diclofenac
and ibuprofen) (Obach, 1999), depending on their physicochemical
properties. Compounds with higher Log P values tend to highly partition
into microsomes (Nagar and Korzekwa, 2012).
The most commonly used in vitro method is a two-step method

to evaluate TDI (Grimm et al., 2009). This involves incubating the
inactivator with microsomes in a primary incubation followed by a
secondary incubation with another substrate to measure the remaining
enzyme activity. This assay can be performed with either a dilution (to
minimize competitive inhibition) or a nondilution design (Grimm et al.,
2009). There has been considerable discussion regarding the advantages
and disadvantages of the dilution versus nondilutionmethods (Parkinson
et al., 2011;Mohutsky andHall, 2014; Stresser et al., 2014). A characteristic
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of the dilution method is the use of a high concentration of microsomal
protein (usually.0.5 mg/ml) in the preincubation phase. This can cause
significant microsomal partitioning, decreasing free inactivator concen-
trations. DDI predictions can be significantly different, especially for
compounds that are highly partitioned (e.g., amiodarone: KI = 7.9 mM
vs. KI,u = 3.16 nM) (Rougee et al., 2017).
We have shown previously that using numerical methods to model

TDI data has several advantages over the traditional replot method
(Korzekwa et al., 2014; Nagar et al., 2014; Yadav et al., 2018): 1)
Michaelis-Menten kinetics (MM) is not assumed and the frequently
observed non-MM kinetics can be easily modeled; 2) parameter
errors in all models (including MM) are significantly lower due to
the lack of propagation of errors seen in the replot method; 3) other
complexities such as quasi-irreversible inactivation, inhibitor loss,
and sequential (Seq) metabolism can be modeled; and 4) the use of
the numerical method has been shown to result in more accurate DDI
predictions than the replot method. The replot method does have two
advantages when MM kinetics applies. First, nonspecific enzyme
loss is corrected by normalizing the dataset to the [I] = 0 controls.
Second, residual competitive inhibition can be ignored since the
replot of the data uses only the slopes of the remaining activity plots.
As explained in the theoretical section, a dilution step shifts the
partitioning equilibrium, resulting in higher free concentrations for
highly partitioned compounds in the secondary incubation. This
increased concentration of inactivator, and the resulting competi-
tive inhibition, does not impact the estimation of KI for MM kinetics
with the replot method, but must be considered with the numerical
method.
We have previously shown that nonhyperbolic spacing in the slopes

of PRA plots can be due to multiple binding [two binding site model
(EII)] kinetics (Nagar et al., 2014) or the consumption of inactivator
(Yadav et al., 2018). The Y-intercept of PRA plots displays the degree
of competitive inhibition, which itself can be impacted by mem-
brane partitioning. Since all data are modeled simultaneously with
the numerical method, it is important to ascertain whether TDI
parameters are impacted by covariance between the slope and the
Y-intercept data.
In this work, simulations were used to investigate methods to

include microsomal partitioning in vitro TDI models. Additionally, we
evaluated the possible covariance between multisubstrate binding and
lipid partitioning [i.e., can I → EI → EII be distinguished kinetically
from (I → EI) + (I → IL)?]. Further, experimental in vitro TDI datasets
were generated and analyzed for the CYP3A4 inactivator ITZ and the
CYP2D6 inactivator paroxetine (PAR).

Materials and Methods

Solvents used for LC-MS/MS were obtained from Honeywell (B&J
AC/HPLC certified solvent) and were of analytical grade. PAR was obtained
from Matrix Scientific (Columbia, SC). ITZ was obtained from Toronto
Research Chemicals (North York, ON, Canada). Dextromethorphan hydro-
bromide (DXT) and dextrorphan tartrate (DXO) were purchased from
Santa Cruz Biotechnology (Dallas, TX). N,N-Dimethylacetamide, midazolam
(MDZ) and 1-hydroxy midazolam (1-OH MDZ) were obtained from Sigma-
Aldrich (St. Louis, MO). Pooled (n = 35 livers) human liver microsomes
(HLMs), NADPH solution A and solution B were obtained from Corning Life
Sciences (Corning, NY).

Theoretical Considerations

Microsomal partitioning can be modeled in two ways with the numerical
method, post hoc and concurrent. In the post hoc approach, total KI can be
multiplied by the fumic to yield a KI,u. In the concurrent approach, microsomal
binding can be modeled by adding a partitioning step (Fig. 1) to the kinetic

scheme (similar to protein binding) where inactivator “I” forms a reversible
complex with the lipid in the microsomes “L” forming IL.

In the traditional two-step in vitro TDI assay with dilution, aliquots of
the preincubation mixture are added to the secondary incubation mixture
containing NADPH and probe substrate. In the presence of microsomal
partitioning, the dilution step causes a shift in the equilibrium of free and
bound inactivator concentrations. The higher the microsomal partitioning,
the greater is the shift in equilibrium toward higher than expected free
inactivator concentrations in the secondary incubation (Fig. 1). Simula-
tions with a dilution in vitro TDI assay at one inactivator concentration
(10 mM) are shown in Fig. 1. Fig. 1, A and B shows the free inactivator
concentration with dynamic lipid partitioning for fumic of 0.95 and 0.01,
respectively. It can be observed from Fig. 1A that minimal partitioning results
in an equilibrium inactivator concentration similar to that expected upon dilution.
In Fig. 1B, it can be seen that for compounds that partition highly into lipids, 1) at
time 0 the free inactivator concentration is lower than the nominal concentration
(0.1 vs. 10 mM), and 2) there is a significant shift in equilibrium during the
dilution step, leading to a higher than expected inactivator concentration.
Figure 1C shows the difference between the nominal (20-fold dilution) and
actual fold dilution (dilution after re-equilibration, simulated across a range of
0–1 fumic). For example, for an inactivator with a fumic of 0.2, the fold dilution
will be only 5-fold when the nominal fold dilution is 20-fold. This will result in
a free 4-fold higher inactivator concentration than expected in the secondary
incubation. For potent inactivators like mibefradil, ritonavir, and ITZ, a higher
inactivator concentration could violate the assumption of no inactivation in the
secondary incubation.

A dilution step in a TDI assay is incorporated to minimize competitive
inhibition in the secondary inhibition. In reality, high-affinity inactivators
(relative to the substrate) can still cause competitive inhibition after dilution.
Simulations using a 20-fold dilution protocol were conducted with an
MM dataset generated with minimal (0.1%) error (Fig. 2). As shown in
Fig. 2, the Y-intercept of a PRA plot shows the degree of competitive
inhibition in the secondary incubation. Figure 2A shows the PRA plot and
replot for an inactivator with Ki = 3 mM, and a substrate with Km = 1 mM.
The Y-intercept indicates minimal competitive inhibition in the secondary
incubation. Figure 2B shows the PRA plot and replot for an inactivator with
Ki = 3 mM, and a substrate with Km = 30 mM. The Y-intercept indicates
substantial competitive inhibition. In both cases, since only the slope of
the PRA plot is used in the replot, any competitive inhibition (i.e., the
difference is the Y-intercept) is ignored in the replot analysis, and identi-
cal TDI parameters are obtained. Thus, under the limiting conditions of
MM kinetics, minimal experimental error (the replot method propagates
errors), and the absence of any complicating factors (i.e., inhibitor loss,
Seq metabolism, and quasi-irreversible intermediate formation), the tradi-
tional replot method is sufficient to estimate TDI parameters. Since these
conditions are rarely met, the efforts in this manuscript are focused on
defining the impact of microsomal partitioning on TDI parameter estimation
using the numerical method.

Methods

Dataset Simulations and Model Fitting. To evaluate the impact of lipid
partitioning on the estimation and interpretation of TDI kinetics, four models
were evaluated: MM,MM-IL (i.e., MMwith lipid partitioning), EII, and EII-IL
(EII with lipid partitioning) (Fig. 3). Ordinary differential equations were
constructed for all of the models, and simulated datasets were generated
with two models (MM-IL and EII-IL), with a 20-fold dilution in the secondary
incubation, and at the four different fumic values: 0.02, 0.1, 0.5, and 0.9. Datasets
were generated with a normally distributed 5% error. Fifty datasetswere generated
with both theMM-IL and EII-IL models. Simulations were performed for MM-IL
with KI,u = 0.1 mM (k4 = 270 mM/min and k5 = 27 minutes) and kinact =
0.1 minutes. Simulations for EII-IL were performed with k4 = 270 mM/min, k5 =
27minutes, k6 = 0.02minutes, k7 = 270mM/min, and k8 = 0.25mM/min. To a first
approximation, this results in a KI,u1 = 0.1 mM, KI,u2 = 1 mM, and kinact =
0.14 minutes. For both the single- and double-binding models, k1 = 270 mM/min,
k2 = 1350 minutes, and k3 = 36 minutes were used.

The initial inactivator concentrations (n = 8) used were between 0 and 80 mM
to appropriately bracket the KI,u values (with a 2-fold dilution scheme), and
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preincubation times were between 0 and 60 minutes with 10 time points for all
datasets. The initial enzyme and substrate concentrations were set at 0.08 and
50 mM, respectively. All four models were individually fit to each simulated
dataset.

For models incorporating nonspecific microsomal partitioning (MM-IL and
EII-IL), lipid partitioning was modeled with L × kon = 2000 minutes, and koff was
calculated with eq. 1 at different fumic values of 0.02, 0.1, and 0.5:

koff ¼ fumicL  kon
12 fumic

ð1Þ

where L × kon is a nominal lipid concentration (at 1 mg/ml microsomes) times
the association rate constant, and koff is the dissociation rate constant (see
Fig. 1).

Simulations were also performed using a nondilution incubation method
using MM-IL and EII-IL models at different fumic values. While fitting
incorrect models, initial estimates were varied to allow the model to converge.
For example, while fitting an EII model to an MM-IL dataset, initial estimates
for k5 and k7 were varied. AICc values were used for comparison of different
models (Akaike, 1974), along with residual plots, correlation matrices, and
parameter errors. All the simulated datasets were generated using the NDSolve
function in Mathematica 11.1.1.0 (Wolfram Research, Champagne, IL).

The NonlinearModelFit function was used to fit models to the data with
PrecisionGoal = 10, finite difference derivatives with an order of 3, and 1/Y
weighting. The WhenEvent function was used to simulate the dilution step in
the secondary incubation. While fitting models to product concentrations,
parameter estimates, parameter errors, and AICc values were stored for each

Fig. 2. Simulations of virtual TDI datasets with 0.1% error, with
MM, KI = 3 mM, and kinact = 0.05 minute. PRA plots are depicted,
with inset replots. (Left) Substrate Km = 1 mM. (Right) Substrate
Km = 30 mM. Competitive inhibition in the secondary incubation is
observable in the Y-intercept of (Right).

Fig. 1. Modeling the shift in equilibrium of inhibitor partitioning. An assay was simulated with 10 mM inactivator concentration and 20-fold dilution at 10 minutes. The
orange curve in (A and B) shows the change in free inactivator concentration with time. (A) Lipid partitioning modeled concurrently with fumic = 0.95. (B) Lipid partitioning
modeled concurrently with fumic = 0.01. (C) Difference in expected and observed fold dilution at different fumic. Nonsaturable partitioning is assumed (the change in lipid
concentration with time (dL/dt) 5 0).
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run. The average values of parameters and parameter errors were subsequently
calculated for all runs.

Finally, although outside the immediate scope of this manuscript, it was
observed that experimental fumic values are not always available, and simulations
were performed to evaluate whether fumic can be predicted from in vitro TDI
datasets. Also, previously generated experimental in vitro TDI datasets (Yadav
et al., 2018)were used to estimate fumic. Themethods and results for this tangential
exercise are included in the Supplemental Material.

Data Analysis. The datasets and the data generated from model fitting were
stored for each run. Average values of parameters and parameter errors were
calculated and reported. The KI,u value was obtained directly from the models
incorporating concurrent lipid partitioning as k5/k4 (using a rapid equilibrium
assumption). For post hoc models, KI,u was obtained by multiplying the total KI

with fumic.
The resultant kinact for double-binding models was calculated by using the

net rate constant concept (Cleland, 1975). The equation used for calculating net
kinact for EIIs in Fig. 3, C and D was as follows:

kinact ¼ 1�
1
k
0
4

þ 1
k8
þ k6

k
0
4

�þ 1�
1
k6
þ k

0
4
k6

� ð2Þ

where k49 is given by k
0
4 ¼ k4k8

k7þk8
For multiple binding models, a ratio of kinact/KI,u1 was calculated using the net

rate constant kinact and the first binding constant KI,u1. When KI,u1 is significantly
smaller than KI,u2, linear inactivation (at low [I]) is best described by the first
binding event.

In Vitro TDI Incubations. Inactivators [ITZ as a CYP3A inhibitor (Mao
et al., 2011) and PAR as a CYP2D6 inhibitor] were tested using a standard
two-step approach for TDI inhibition of P450 enzymes using pooled HLM
(Grimm et al., 2009; Yadav et al., 2018). MDZ was used as a probe substrate
for CYP3A, and DXO was used as a probe substrate for CYP2D6. Briefly,
eight concentrations of inactivators [ITZ (0–5 mM) and PAR (0–10 mM)]
were incubated at 37�C with a 1 mg/ml suspension of HLM in 0.1 M
potassium phosphate buffer, pH 7.4, as a primary incubation. After 5 minutes
of preincubation, the reaction was initiated by the addition of a NADPH
regenerating system (final concentration, 1.3 mM NADP+, 3.3 mM glucose-6
phosphate, 0.4 U/ml glucose 6-phosphate dehydrogenase, and 3.3 mM

magnesium chloride). At specific time points, an aliquot (7.5 ml) of the primary
incubation was added to the secondary incubation (142.5 ml) containing either
50 mMMDZ or 75 mMDXO, and NADPH. The primary incubation was run for
0–60 minutes, with data collected at a total of 13–14 time points. The secondary
incubation was allowed to run for 2 minutes for CYP3A and 10 minutes for
CYP2D6 followed by quenching with ice-cold acidified acetonitrile containing
diltiazem as the internal standard. After centrifugation at 10,000 rpm for 8 minutes,
the supernatant was analyzed for either 1-OH MDZ or DXO. Stock solutions
of PAR, MDZ, and DXT were prepared in methanol. The final methanol
concentration in the primary incubation was less than 0.1% (v/v). ITZ stock
solutions were prepared in a mixture of N,N-dimethyl acetamide and acetone
(12.5% and 87.5%, respectively). The total final concentration of both the
organic solvents was less than 0.1% v/v. Incubations were also performed
without inactivators to assess the nonspecific loss of enzyme activity. Both
sets of incubations were performed in duplicate.

Microsomal Partitioning. Equilibrium dialysis was performed to determine
microsomal partitioning of PAR in HLM, with a previously published method
(Yadav et al., 2018). Briefly, a 0.5 mg/ml HLM suspension was spiked with
PAR at a final concentration of 2 mM. A 96-well equilibrium dialyzer (Harvard
Apparatus) was used to perform dialysis with a PAR-spiked HLM suspension
on one side and blank phosphate buffer (pH 7.4) on the other side at 37�C for
20 hours. Samples on each side of the membrane were analyzed by LC-MS/MS
for concentrations of PAR. For ITZ, four different values [0.056 at 0.25 mg/ml
HLM (Galetin et al., 2005), 0.061 at 0.1 mg/ml HLM (Rougee et al., 2017),
0.051 at 0.2 mg/ml HLM (Ishigam et al., 2001), and 0.196 at 0.025 mg/ml
HLM (Isoherranen et al., 2004)] were obtained from the literature, and an average
value of 0.0095 at a protein concentration at 1 mg/ml HLM was calculated using
the method of Austin et al. (2002).

LC-MS/MS. Samples from in vitro TDI assayswere analyzedwith LC-MS/MS.
Calibration curves were prepared in 0.05 mg/ml HLM in phosphate buffer
(pH 7.4) spiked with analyte standards, followed by precipitation with
acetonitrile. The supernatant was analyzed with LC-MS/MS. The LC system used
was an Agilent 1100 series HPLC system. A Phenomenex Luna-C18 (3mm, 30�
2 mm) analytical column coupled with a C18 guard column (4 � 2.0 mm)
was used for chromatographic separation of DXO and 1-OH MDZ. Five
microliters of sample volume was injected into the system. An AB Sciex API
4000 LC-MS/MS system was used for analyzing plasma samples in positive
ion mode using the following MRM transitions: 342.092–324.100 m/z for

Fig. 3. Enzyme kinetic models used for simulating virtual TDI
datasets with 5% error. (A) MM model. (B) MM-IL model. (C) EII
model. (D) EII-IL model.
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1-OH MDZ; 258.113–199.200 m/z for DXO; 331.27–70.257 m/z for PAR;
and 415.500–178.400 m/z for diltiazem (IS). LC-MS solvents consisted of
0.1% formic acid in water as an aqueous mobile phase (A) and 0.1% formic
acid in acetonitrile as organic mobile phase (B) for 1-OH MDZ and PAR,
whereas 10 mM ammonium acetate with 0.1% acetic acid was used as an
aqueous mobile phase (A) and 0.1% formic acid in acetonitrile as organic
mobile phase (B) for DXO. The flow rate was 0.7 ml/min for 1-OH MDZ,
0.55 ml/min for PAR, and 0.45 ml/min for DXO. The gradient elution used
for 1-OH MDZ was programmed from 10% to 90% B in 0.5 minutes maintained
at 90% until 1.1 minutes and returned to the initial condition at 2 minutes and
maintained until 7 minutes. For DXO, the following gradient was used starting
with 10% B and was maintained until 0.5 minutes, then to 95% B at 1 minute;
and was maintained at 95% until 2.5 minutes, returned to initial conditions at
3 minutes, and was maintained until 7 minutes. The retention time for DXO
was 2.8 minutes, and 4.25 for 1-OH MDZ. For PAR, the gradient elution used
was programmed from 10% to 95% B in 1 minute, maintained at 95% until
2.5 minutes, returned to initial condition at 4 minutes, and was maintained until
8 minutes.

In Vitro TDI Model Development. Data obtained from in vitro TDI
incubations were converted to a log percentage of the remaining activity
plots (PRA plots) and were further evaluated for model development. Several
enzyme kinetic models for P450 enzyme TDI were developed by incorporating
MIC formation, inhibitor depletion, and concurrent lipid partitioning. A numerical
method (Korzekwa et al., 2014; Nagar et al., 2014; Barnaba et al., 2016) was used
to fit different models to the data. Initial estimates of rate constants were obtained
using a previously published approach (Korzekwa et al., 2014; Nagar et al., 2014;
Barnaba et al., 2016; Pham et al., 2017; Yadav et al., 2018). Briefly, k9 was
incorporated into the models to account for nonspecific activity loss over
time observed in the absence of inactivator (0 mM inactivator), and the estimate
was obtained by fitting a monoexponential loss model to 0 mM inactivator data.
Lipid partitioning was incorporated in the models to account for nonspecific
partitioning to microsomes, as shown in Figs. 1, 4A, 5A, and 6A. I and L
formed an I-L complex with an association rate constant at 2000 mM/min.
The dissociation rate constant was calculated using eq. 1. MIC formation
was modeled as a multistep process (Barnaba et al., 2016) involving the

formation of Fe+3:carbene and Fe2+:carbene. For example, in Fig. 5A, k6 and k12
form Fe+3:carbene, k7 regenerates active enzyme, and k8 forms Fe2+:carbene.
KI values were estimated from ratios of association and dissociation rate con-
stants (e.g., k5/k4 in Fig. 3). An KI,u is obtained with the numerical method with
concurrent modeling of lipid partitioning.

MIC-IL, MIC-IL-M (M refers to metabolism of inhibitor), MIC-EII-IL (two
molecules of inactivator binding simultaneously in the active site), and MIC-
EII-M-IL models were developed and evaluated. These models were tested
separately for both inactivators. Additionally, an MIC-EII-M-Seq-IL model was
tested for ITZ. In this model, the metabolite M is the inactivator, resulting in a lag
time due to Seq metabolism. During model fitting, association rate constants were
fixed at 270 mM/min (Barnaba et al., 2016) for PAR modeling. Since ITZ has a
reported high affinity for CYP3A4, a 27 nM (Isoherranen et al., 2004) sensitivity
analysis was performed to optimize the association rate constant for ITZ. A
value of 810 mM/min was used for the association rate constants for ITZ. This
value is at the upper end of the typically observed range of 107–104 M/s, for
small molecule-protein interactions (Fersht, 2017). For MDZ, the association
and dissociation rate constants were fixed at 270 mM/min and 1350 minutes,
respectively. For DXT, the association and dissociation rate constants were
fixed at 270 mM/min and 2700minutes, respectively. Parameter errors for net rate
constants were calculated with error propagation for individual rate constants.
AICc (Akaike, 1974), adjusted R2, weighted residual plots, parameter errors, and
correlation matrices were used to compare different models for each dataset.

Results

Simulated MM-IL datasets were generated with 5% error at four
different fumic values (0.02, 0.1, 0.5, and 0.9), as described in
Methods. All four models (MM-IL, MM, EII, and EII-IL) were fit
to each dataset, and results are shown in Table 1. At fumic = 0.02,
MM-IL and EII models had similar AICc values. However, estimates
of kinact and KI,u were different for the two models. The inactivation
efficiency (kinact/KI,u) was 3.47 mM/min for the EII model, whereas it
was 1.00 mM/min for the MM-IL model. As the fumic value approaches

Fig. 4. Kinetic scheme for CYP2D6 inhibition by PAR (40, 20, 10, 5, 2.5, 1.25, 0.625, and 0 mM) in HLM. (A) Kinetic scheme for the MIC-M-IL model. (B) Experimental
(points) and MIC-M-IL model fitted (solid lines) PRA plots. (C) Plot of kobs vs. [I] for the standard replot method with linear data points [n = 4 points in (B)]. E, enzyme;
k, rate constants; L, lipid; M, inhibitor metabolite; P, product; S, substrate. Nonspecific enzyme loss (E*** formation) was modeled from all active enzyme species as a
first-order degradation. All parameter estimates are listed in Supplemental Materials.
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1 (no partitioning), MM-IL collapses intoMM, and EII-IL collapses into
EII. Further, since MM models are nested in EII, the first binding and
inactivation in EII (KI,u1 and kinact1) is well defined and similar to MM.
The second binding and inactivation in EII (KI,u2 and kinact2) is not
well defined, and these unnecessary parameters lead to increased
AICc values. The convergence for the EII-IL model was less than
100% at all fumic values.
Next, EII-IL datasets were generated with 5% error at four different

fumic values (0.02, 0.1, 0.5, and 0.9). The results for model fitting to
EII-IL datasets are shown in Table 2. At all fumic values, EII-IL was
always the best model (lowest AICc). As expected, as the fumic value
approached 1, both the EII and EII-IL models gave similar fits and
became indistinguishable as EII-IL collapsed to EII.
At the lowest fumic value (0.02), the MM and MM-IL models did

not converge. The percentage of convergence of the MM andMM-IL
models increased to 100% at fumic = 1; however, kinact and KI were
both overpredicted. Also, EII and EII-IL could be identified as the
better models.

Finally, simulations were performed with a nondilution incuba-
tion method using MM-IL and EII-IL with fumic = 0.02 (fumic values
of 0.1 and 0.5 provided similar results; data not shown). It was observed
that the estimated inactivation efficiency (kinact/KI,u) was identical
for both methods of lipid-partitioning corrections (concurrent and
post hoc) at different fumic values (Table 3) in the absence of dilution of
the secondary incubation.
Experimental In Vitro TDI. For PAR, various models that

included concurrent lipid partitioning were tested. The following
models were tested (AICc): MIC-IL (2718), MIC-M-IL (2762),
MIC-EII-IL (2728), and MIC-EII-M-IL (2758). EII refers to
double binding of I to E. The MIC-M-IL model (Fig. 4A) was found
to be the best fit model. The MIC-M-IL model was able to capture
the concave upward curvature in the dataset (Fig. 4B). Using the
numerical method with concurrent fumic modeling, KI,u and kinact
estimates of PAR were 0.616 0.09 mM and 0.0056 0.001 minute,
respectively (Table 4). Further, the kinact/KI,u value of PAR was
estimated to be 0.008 6 0.002 mM/min using the numerical method,

Fig. 5. Kinetic scheme (ITZ model 1) for CYP3A inhibition by ITZ (5, 2.5, 1.25, 0.625, 0.3125, 0.156, 0.078, and 0 mM) in HLM. (A) Kinetic scheme for MIC-EII-M-IL
model. (B) Experimental (points) and MIC-EII-M-IL model fitted (solid lines) PRA plots. (C) Plot of kobs vs. [I] for the standard replot method with linear data points
[n = 7 points from (B)]. E, enzyme; I, inhibitor; k, rate constants; L, lipid; M, inhibitor metabolite; P, product; S, substrate. Nonspecific enzyme loss (E*** formation) was
modeled from all active enzyme species as a first-order degradation. All parameter estimates are listed in Supplemental Materials.

Fig. 6. Kinetic scheme (ITZ model 2) for CYP3A inhibition by ITZ
(5, 2.5, 1.25, 0.625, 0.3125, 0.156, 0.078, and 0 mM) in HLMs. (A)
Kinetic scheme for the MIC-EII-M-Seq-IL model. (B) Experimen-
tal (points) and MIC-EII-M-Seq-IL model fitted (solid lines) PRA
plots. E, enzyme; I, inhibitor; k, rate constants; L, lipid; M, inhibitor
metabolite; P, product; S, substrate. Nonspecific enzyme loss (E***
formation) was modeled from all active enzyme species as a first-
order degradation. All parameter estimates are listed in Supple-
mental Materials.
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;45-fold higher than with the standard replot method (data not
shown).
Next, ITZ in vitro TDI data were modeled. Several models (AICc)

were evaluated for ITZ datasets, including MM-IL (2823), MM-IL-M
(2899), EII-IL (2859), EII-IL-M (did not converge), MIC-IL (2913),
MIC-IL-M (2958), MIC-EII-IL (2939), MIC-EII-M-IL (2972), and
MIC-EII-M-Seq-IL (2973). MIC-EII-M-IL and MIC-EII-M-Seq-IL
gave comparable fits. The MIC-EII-M-IL model yielded two KI,u

estimates for two binding events, 0.024 6 0.006 and 0.037 6 0.016 mM
(Table 4). The net kinact value was estimated to be 0.00 6 0.004 minute.
MIC-EII-M-IL was able to capture the competitive inhibition (evident
from the Y-intercept of Fig. 5) and also the concave upward curvature
of the observed data (Fig. 5). The estimated rate constants for the
MIC-EII-M-IL model were all well defined (Supplemental Material).
However, the propagation of errors to calculate the net kinact value
resulted in a high error (0.006 0.004 minute) (Table 4). The MIC-EII-
M-Seq-IL model and resultant fit are shown in Fig. 6. The observed
lag at early preincubation times was captured by this model, but,
apparently, metabolite concentrations did not approach saturation.

This “Vmax/Km” kinetic range resulted in high covariance between
metabolite binding and inactivation. Therefore, results are reported
upon fixing the metabolite binding constant (Supplemental Material;
Table 4).

Discussion

The goal of this work was to evaluate the effect of lipid partitioning
on TDI kinetics, and to evaluate methods to model lipid partitioning in
in vitro TDI assays. Also, this effort aimed to determine the covariance
between lipid partitioning and multiple inhibitor binding. Simulations
were performed to test how high lipid partitioning could impact the
interpretation of TDI kinetics, and experimental TDI datasets were
additionallymodeled. Finally, the use of in vitro TDI datasets to estimate
fumic was evaluated.
Lipid partitioning during in vitro assays can be corrected bymultiplying

total KI by fumic (post hoc approach) or, with the numerical method, by
adding a lipid partitioning component to the model (concurrent approach)
(Fig. 1). The advantage of modeling lipid partitioning explicitly is that any

TABLE 2

Results for model fitting to EII-IL datasets with 5% error

All four models were fit to the all the datasets with different fumic. [I] values (n = 8) were used as detailed in the table.

Simulated with Parameters MM (Post Hoc)a MM-IL (Concurrent) EII (Post Hoc)a EII-IL (Concurrent)

EII-IL fumic = 0.02; KI,u1 = 0.1 mM; KI,u2 = 1 mM; kinact =
0.14 min; [I] range: 0–80 mM

KI,u DNC DNC KI,u1 = 0.004 6 0.0002
KI,u2 = 1.66 6 0.29

KI,u1 = 0.08 6 0.006
KI,u2 = 0.81 6 0.14

kinact DNC DNC 0.006 6 0.001 0.14 6 0.032
kinact/KI,u DNC DNC kinact/KI,u1 = 1.53 kinact/KI,u1 = 1.75
% convergence 0 0 64 100
Average AICc DNC DNC 2587 2616
Average r2 DNC DNC 0.997 0.998

EII-IL fumic = 0.1; KI,u1 = 0.1 mM; KI,u2 = 1 mM; kinact =
0.14 min; [I] range: 0–40 mM

KI,u DNC 13.7 6 10.6 KI,u1 = 0.008 6 0.0004
KI,u2 = 1.21 6 0.14

KI,u1 = 0.1 6 0.006
KI,u2 = 0.98 6 0.11

kinact DNC 2.4 6 1.7 0.02 6 0.004 0.14 6 0.018
kinact/KI,u DNC 0.39 6 0.23 kinact/KI,u1 = 2.88 kinact/KI,u1 = 1.38
% convergence 0 26 76 100
Average AICc DNC 2398 2642 2681
Average r2 DNC 0.913 0.996 0.998

EII-IL fumic = 0.5; KI,u1 = 0.1 mM; KI,u2 = 1 mM; kinact =
0.14 min; [I] range: 0–40 mM

KI,u 0.02 6 0.003 0.04 6 0.005 KI,u1 = 0.04 6 0.002
KI,u2 = 0.94 6 0.10

KI,u1 = 0.1 6 0.004
KI,u2 = 1.0 6 0.07

kinact 0.15 6 0.01 0.15 6 0.01 0.09 6 0.01 0.14 6 0.01
kinact/KI,u 8.2 6 1.4 4.2 6 0.70 kinact/KI,u1 = 2.38 kinact/KI,u1 = 1.40
% convergence 78 100 14 98
Average AICc 2529 2534 2803 2808
Average r2 0.919 0.924 0.997 0.998

EII-IL fumic = 0.9; KI,u1 = 0.1 mM; KI,u2 = 1 mM; kinact =
0.14 min; [I] range: 0–10 mM

KI,u 2.0 6 0.20 1.98 6 0.18 KI,u1 = 0.09 6 0.01
KI,u2 = 1.0 6 0.08

KI,u1 = 0.1 6 0.01
KI,u2 = 1.0 6 0.04

kinact 0.38 6 0.02 0.38 6 0.02 0.13 6 0.01 0.14 6 0.01
kinact/KI,u 0.2 6 0.02 0.2 6 0.02 kinact/KI,u1 = 1.51 kinact/KI,u1 = 1.40
% convergence 100 100 100 100
Average AICc 2557 2558 2709 2709
Average r2 0.984 0.985 0.998 0.998

DNC, did not converge.
aKI,u was calculated as KI ·fumic.

TABLE 3

Results for model fitting of MM-IL and MM models to nondilution MM-IL or EII-IL datasets at fumic = 0.02

Simulated with Parameters Concurrent Post Hoca

MM-IL fumic = 0.02 KI,u = 0.1 kinact = 0.1 KI,u 0.1 6 0.01 0.1 6 0.01
kinact 0.1 6 0.01 0.1 6 0.01
kinact/KI,u 1.00 1.00

EII-IL fumic = 0.02 KI,u1 = 0.1 KI,u2 = 1.0 kinact = 0.14 KI,u KI,u1 = 0.10 6 0.009
KI,u2 = 1.00 6 0.077

KI,u1 = 0.096 6 0.009
KI,u2 = 1.04 6 0.080

kinact 0.14 6 0.04 0.024 6 0.002
kinact/KI,u kinact/KI,u1 = 1.40 kinact/KI,u1 = 2.38

aKI,u calculated as KI · fumic was parameterized.
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shift in the equilibrium is captured, as evident fromFig. 1.Moreover, since
the estimates for kon and koff (eq. 1) obtained from the measurement of
fumic can be fixed during the modeling process, it does not impact the
number of TDI parameters to be estimated.
P450 enzymes are known for exhibiting atypical kinetics (Korzekwa

et al., 1998; Hutzler and Tracy, 2002; Atkins, 2005; Tracy, 2006;
Denisov and Sligar, 2012). Our previous studies have discussed how
atypical kinetics influence TDI kinetics (Korzekwa et al., 2014; Nagar
et al., 2014; Barnaba et al., 2016; Yadav et al., 2018) and impact DDI
predictions (Yadav et al., 2018). Atypical kinetics in TDI can result from
multiple binding events (Fisher et al., 1970; Korzekwa et al., 1998),
nonequilibrating enzyme populations (Pearson et al., 2006; Davydov
and Halpert, 2008), functional heterogeneity (Rodgers et al., 2018),
oligomerization of different P450 enzymes (Denisov et al., 2009; Davydov
et al., 2013, 2015, 2017), saturable or nonsaturable inactivator depletion
during preincubation (Yadav et al., 2018), or a combination of these
processes. These processes can be further complicated by partitioning
of the substrate or inhibitor into microsomal membranes in vitro.
In some cases, lipid partitioning may be misinterpreted as a double-

binding event, leading to incorrect parameter estimates. For example, in
Table 1 (MM-IL datasets), when fumic = 0.02, the MM-IL and EII model
fits were indistinguishable (dAICc = 3). This can result in incorrect
model selection and can further lead to errors in TDI-mediated DDI
predictions. For less partitioned datasets (fumic values of 0.1 and 0.5),
the inclusion of partitioning resulted in better models. These
simulations are consistent with the experimental results for PAR
(fumic = 0.24, MIC-M-IL is the best fit model) (Fig. 4). When the fumic

value approaches 1, MM-IL collapses into MM, and both models
provide equally good fits to the MM-IL dataset.
When EII-IL datasets were modeled (Table 2), the correct (EII-IL)

model was always the statistically best fit model from fumic values of
0.02–0.5. These simulations are consistent with experimental results for
ITZ (fumic = 0.009; the two best fit models were EII-IL type models)
(Figs. 5 and 6). Again, as expected, at fumic = 0.9, EII-IL collapsed to EII.
At high microsomal partitioning, MM models did not always converge.
Even with moderate microsomal partitioning, the MMmodels converged
but displayed significantly poorer fits than the EII models. Thus, although
multiple binding and lipid partitioning are highly correlated, the two
events can be deconvoluted by the use of experimental fumic data.
Together, the data in Tables 1 and 2 clearly suggest the importance of
measuring fumic and using this value explicitly in models for in vitro
TDI kinetics.
The need to include fumic values in the model (concurrent method)

arises whenever the dilution experimental design is used for in vitro
TDI assays. Table 3 clearly shows that with a nondilution experi-
mental design, the Ki value can be accurately corrected post hoc with

the experimental fumic value, even in the presence of complex kinetics.
Although the use of dilution has been embraced to avoid competitive
inhibition of substrate metabolism (Mohutsky and Hall, 2014), we have
previously shown that the numerical method works equally well for
dilution and nondilution datasets (Nagar et al., 2014). In either case,
experimental measurement of fumic is necessary to accurately model and
interpret TDI datasets.
The best kinetic parameters for PAR and ITZ are consistent with

their reported mechanism and kinetics. PAR, which is known to
inactivate P450 enzymes by the formation of carbene intermediate,
was observed to be a typical MIC-forming inactivator showing
concave upward curvature in the PRA plot (Fig. 4B). Both the
MIC-M-IL and MIC-EII-M models were tested, and MIC-M-IL was
the better model. Moreover, CYP2D6 is not known to show double-
binding kinetics (McMasters et al., 2007). It is interesting that the
estimated kinact value is small (0.005 minute) for PAR (Table 4).
PAR is a methylenedioxyphenyl compound that is converted to an
Fe+3-carbene intermediate and further reduced to an Fe+2-carbene
intermediate. For a similar compound, MDMA (3,4-methylenediox-
ymethamphetamine), both Fe+3 and Fe+2 intermediates were shown
to inhibit CYP2D6 activity in a slowly reversible manner (Rodgers
et al., 2018). This mechanism, combined with the long in vivo half-
life of PAR (an average of 21 hours in humans, with 2 weeks needed
to achieve steady state) (Sanchez et al., 2014), may be responsible for
the observed DDIs. This can be addressed only by dynamic in vitro-in
vivo modeling and will not be captured with static DDI prediction
methods (i.e., directly with kinact values).
ITZ is a potent inhibitor and a type II binder of P450 enzymes (von

Moltke et al., 1996; Wang et al., 1999; Galetin et al., 2005; Isin and
Guengerich, 2007; Foti et al., 2010). The PRA plot showed that ITZ is a
strong competitive inhibitor and an inactivator (Fig. 5). Non-MMs were
also evident from the PRA plot. Two models provided similar fits, and a
“best fit” model was not identifiable. One model included a combina-
tion of multiple binding, lipid partitioning, and inhibitor depletion. The
second model additionally included Seq metabolism and inactivation by
the metabolite. ITZ shows multiple binding kinetics (Pearson et al.,
2006; Locuson et al., 2007), high partitioning (Ishigam et al., 2001;
Galetin et al., 2005), and extensive metabolism (Templeton et al., 2008;
Rougee et al., 2017). ITZ metabolites are also reported to be CYP3A
inhibitors (Isoherranen et al., 2004; Templeton et al., 2010). An observed
lag in inactivation was fit better with an MIC-EII-M-Seq-IL model (Fig.
6). However, the lack of metabolite data limits our ability to completely
parameterize and interpret this model. Presumably, lack of saturating
metabolite concentrations led to complete covariance between metab-
olite binding and inactivation. Therefore, neither KI nor kinact values
could be estimated. Only kinact/KI could be calculated, using the method

TABLE 4

Comparison of estimates of KI,u and kinact by post hoc and concurrent methods

fumic
a Compound

Post Hoc (KI . fumic) Concurrent
KI,u1 Fold
Difference

kinact Fold
Difference

KI,u kinact AICc KI,u kinact AICc

mM min mM min

0.24 PAR 1.11 6 0.21 0.006 6 0.002 2727 0.61 6 0.09 0.005 6 0.001 2762 0.56 0.83
0.009 ITZ model 1b KI,u1 = 0.0008 6 0.0001

KI,u2 = 0.03 6 0.009
0.005 6 0.003 2951 KI,u1 = 0.024 6 0.006

KI,u2 = 0.037 6 0.016
0.0042 6 0.004 2972 31.44 0.84

0.009 ITZ model 2b DNC DNC NA KI,u1 = 0.015 6 0.0005
KI,u2 = 0.062 (fixed)

NAc 2973 NA NA

DNC, did not converge; NA, not applicable.
afumic at 1 mg/ml.
bKI,u1 used for calculation of kinact/KI,u.
cThe metabolite did not reach saturation (“V/K” range).
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of net rate constants (Cleland, 1975). Interestingly, for both ITZ models
in Table 4, kinact/KI values were similar (0.17 with ITZ model 1 vs. 0.12
with ITZ model 2). Irrespective of the model used, the low estimate of
kinact supports previous reports that the DDI potential of ITZ is due to
competitive inhibition by the parent as well as metabolites (Isoherranen
et al., 2004; Templeton et al., 2008).
It should be noted that models for PAR and ITZ were developed with

certain assumptions. These assumptions include MIC formation, in-
hibitor loss due to metabolism, Seq metabolism, and lipid partitioning,
and are based on mechanisms proposed in the literature. For example,
ITZ is known to undergo Seq metabolism, and the low inhibitor
concentrations used in in vitro studies suggest that inhibitor loss must be
considered. Although the models compared in this study are based on
expected kinetic characteristics, additional details (e.g., ITZ metabolite
kinetics) may result in different models or improvedmodel identifiability.
As seen for the two ITZ models (Figs. 5 and 6), model identifiability is
limited by current mechanistic paradigms and available data.
Finally, results in Table 4 clearly show that the concurrent inclusion of

the fumic in the models provides better fits compared with a post hoc
correction with fumic. This is due to a shift in the equilibrium upon a
dilution assay, which can cause differences in inactivator concentrations
in secondary incubation (Fig. 2), leading to differences in estimation of
KI,u and kinact values. As with the simulations, the experimental data and
modeling underline the importance of collecting experimental fumic

values and incorporating these values into models for TDI kinetics.

Conclusions

It is clear that the standard replot method can only be used for simple
kinetic systems with low experimental errors. The numerical method
easily allows the incorporation of observed kinetic complexities, but
inactivator partitioning must be modeled explicitly for dilution assays.
For some TDI kinetic models, lipid partitioning can be covariant with
multiple inhibitor binding to the enzyme. For most kinetic schemes,
including lipid partitioning in the models results in better fits, as judged
by AICc values, parameter errors, correlation matrices, and weighted
residual plots. Models with lipid partitioning can have markedly
different estimates of KI,u and kinact, leading to potentially different
predictions of drug interactions. For datasets with a dilution experimen-
tal design, the concurrent inclusion of lipid partitioning in models is
better than a post hoc correction with fumic. An alternate experimental
design is to conduct nondilution TDI assays and to incorporate fumic in
a post hoc manner. Although fumic values can be accurately estimated
from some TDI datasets, many of the more complex models will not
converge. In conclusion, observed kinetic complexities should be
modeled with numerical methods, and lipid partitioning (i.e., experi-
mental fumic values) should be explicitly incorporated into the models
when dilution protocols are used.

Authorship Contributions
Participated in research design: Yadav, Korzekwa, and Nagar.
Conducted experiments: Yadav.
Performed data analysis: Yadav, Korzekwa, and Nagar.
Wrote or contributed to the writing of the manuscript: Yadav, Korzekwa, and

Nagar.

References

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr
19:716–723.

Atkins WM (2005) Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Annu
Rev Pharmacol Toxicol 45:291–310.

Austin RP, Barton P, Cockroft SL, Wenlock MC, and Riley RJ (2002) The influence of nonspecific
microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical
properties. Drug Metab Dispos 30:1497–1503.

Barnaba C, Yadav J, Nagar S, Korzekwa K, and Jones JP (2016) Mechanism-based inhibition of
CYP3A4 by podophyllotoxin: aging of an intermediate is important for in vitro/in vivo corre-
lations. Mol Pharm 13:2833–2843.

Cleland WW (1975) Partition analysis and the concept of net rate constants as tools in enzyme
kinetics. Biochemistry 14:3220–3224.

Cohen SD, Pumford NR, Khairallah EA, Boekelheide K, Pohl LR, Amouzadeh HR, and Hinson JA
(1997) Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol
143:1–12.

Davydov DR, Davydova NY, Rodgers JT, Rushmore TH, and Jones JP (2017) Toward a systems
approach to the human cytochrome P450 ensemble: interactions between CYP2D6 and CYP2E1
and their functional consequences. Biochem J 474:3523–3542.

Davydov DR, Davydova NY, Sineva EV, and Halpert JR (2015) Interactions among cytochromes
P450 in microsomal membranes: oligomerization of cytochromes P450 3A4, 3A5, and 2E1 and
its functional consequences. J Biol Chem 290:3850–3864.

Davydov DR, Davydova NY, Sineva EV, Kufareva I, and Halpert JR (2013) Pivotal role
of P450-P450 interactions in CYP3A4 allostery: the case of a-naphthoflavone. Biochem J
453:219–230.

Davydov DR and Halpert JR (2008) Allosteric P450 mechanisms: multiple binding sites, multiple
conformers or both? Expert Opin Drug Metab Toxicol 4:1523–1535.

Denisov IG, Frank DJ, and Sligar SG (2009) Cooperative properties of cytochromes P450.
Pharmacol Ther 124:151–167.

Denisov IG and Sligar SG (2012) A novel type of allosteric regulation: functional cooperativity in
monomeric proteins. Arch Biochem Biophys 519:91–102.

Fersht A (2017) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and
Protein Folding, World Scientific, Hackensack, NJ.

Fisher HF, Gates RE, and Cross DG (1970) A ligand exclusion theory of allosteric effects. Nature
228:247–249.

Foti RS, Rock DA, Wienkers LC, and Wahlstrom JL (2010) Selection of alternative CYP3A4
probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation.
Drug Metab Dispos 38:981–987.

Galetin A, Burt H, Gibbons L, and Houston JB (2006) Prediction of time-dependent CYP3A4
drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and in-
testinal inhibition. Drug Metab Dispos 34:166–175.

Galetin A, Ito K, Hallifax D, and Houston JB (2005) CYP3A4 substrate selection and substitution
in the prediction of potential drug-drug interactions. J Pharmacol Exp Ther 314:180–190.

Grimm SW, Einolf HJ, Hall SD, He K, Lim H-K, Ling K-HJ, Lu C, Nomeir AA, Seibert E,
Skordos KW, et al. (2009) The conduct of in vitro studies to address time-dependent inhibition of
drug-metabolizing enzymes: a perspective of the pharmaceutical research and manufacturers of
America. Drug Metab Dispos 37:1355–1370.

Hutzler JM and Tracy TS (2002) Atypical kinetic profiles in drug metabolism reactions. Drug
Metab Dispos 30:355–362.

Ishigam M, Uchiyama M, Kondo T, Iwabuchi H, Inoue S, Takasaki W, Ikeda T, Komai T, Ito K,
and Sugiyama Y (2001) Inhibition of in vitro metabolism of simvastatin by itraconazole in
humans and prediction of in vivo drug-drug interactions. Pharm Res 18:622–631.

Isin EM and Guengerich FP (2007) Multiple sequential steps involved in the binding of inhibitors
to cytochrome P450 3A4. J Biol Chem 282:6863–6874.

Isoherranen N, Kunze KL, Allen KE, Nelson WL, and Thummel KE (2004) Role of itraconazole
metabolites in CYP3A4 inhibition. Drug Metab Dispos 32:1121–1131.

Kalvass JC, Tess DA, Giragossian C, Linhares MC, and Maurer TS (2001) Influence of micro-
somal concentration on apparent intrinsic clearance: implications for scaling in vitro data. Drug
Metab Dispos 29:1332–1336.

Korzekwa K, Tweedie D, Argikar UA, Whitcher-Johnstone A, Bell L, Bickford S, and Nagar S
(2014) A numerical method for analysis of in vitro time-dependent inhibition data. Part 2.
Application to experimental data. Drug Metab Dispos 42:1587–1595.

Korzekwa KR, Krishnamachary N, Shou M, Ogai A, Parise RA, Rettie AE, Gonzalez FJ,
and Tracy TS (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate
models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active
sites. Biochemistry 37:4137–4147.

Locuson CW, Hutzler JM, and Tracy TS (2007) Visible spectra of type II cytochrome P450-drug
complexes: evidence that “incomplete” heme coordination is common. Drug Metab Dispos
35:614–622.

Mao J, Mohutsky MA, Harrelson JP, Wrighton SA, and Hall SD (2011) Prediction of CYP3A-
mediated drug-drug interactions using human hepatocytes suspended in human plasma. Drug
Metab Dispos 39:591–602.

Margolis JM and Obach RS (2003) Impact of nonspecific binding to microsomes and phospholipid
on the inhibition of cytochrome P4502D6: implications for relating in vitro inhibition data to
in vivo drug interactions. Drug Metab Dispos 31:606–611.

McLure JA, Miners JO, and Birkett DJ (2000) Nonspecific binding of drugs to human liver
microsomes. Br J Clin Pharmacol 49:453–461.

McMasters DR, Torres RA, Crathern SJ, Dooney DL, Nachbar RB, Sheridan RP, and Korzekwa
KR (2007) Inhibition of recombinant cytochrome P450 isoforms 2D6 and 2C9 by diverse drug-
like molecules. J Med Chem 50:3205–3213.

Mohutsky M and Hall SD (2014) Irreversible enzyme inhibition kinetics and drug–drug interac-
tions, in Enzyme Kinetics in Drug Metabolism, pp 57–91, Humana Press, New York City, NY.

Mullins ME, Horowitz BZ, Linden DH, Smith GW, Norton RL, and Stump J (1998) Life-
threatening interaction of mibefradil and b-blockers with dihydropyridine calcium channel
blockers. JAMA 280:157–158.

Nagar S, Jones JP, and Korzekwa K (2014) A numerical method for analysis of in vitro time-
dependent inhibition data. Part 1. Theoretical considerations. Drug Metab Dispos 42:1575–1586.

Nagar S and Korzekwa K (2012) Commentary: nonspecific protein binding versus membrane
partitioning: it is not just semantics. Drug Metab Dispos 40:1649–1652.

Obach RS (1997) Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic
clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and
propranolol. Drug Metab Dispos 25:1359–1369.

Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal
intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to
microsomes. Drug Metab Dispos 27:1350–1359.

Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, and Tremaine LM (2006)
The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions.
J Pharmacol Exp Ther 316:336–348.

Impact of Lipid Partitioning on Microsomal TDI 741

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


Parkinson A, Kazmi F, Buckley DB, Yerino P, Paris BL, Holsapple J, Toren P, Otradovec SM,
and Ogilvie BW (2011) An evaluation of the dilution method for identifying metabolism-
dependent inhibitors of cytochrome P450 enzymes. Drug Metab Dispos 39:1370–1387.

Pearson JT, Hill JJ, Swank J, Isoherranen N, Kunze KL, and Atkins WM (2006) Surface plasmon
resonance analysis of antifungal azoles binding to CYP3A4 with kinetic resolution of multiple
binding orientations. Biochemistry 45:6341–6353.

Pham C, Nagar S, and Korzekwa K (2017) Numerical analysis of time dependent inhibition
kinetics: comparison between rat liver microsomes and rat hepatocyte data for mechanistic model
fitting. Xenobiotica 1–28.

Rodgers JT, Davydova NY, Paragas EM, Jones JP, and Davydov DR (2018) Kinetic mech-
anism of time-dependent inhibition of CYP2D6 by 3,4-methylenedioxymethamphetamine
(MDMA): functional heterogeneity of the enzyme and the reversibility of its inactivation.
Biochem Pharmacol 156:86–98.

Rougée LRA, Mohutsky MA, Bedwell DW, Ruterbories KJ, and Hall SD (2017) The impact of the
hepatocyte-to-plasma pH gradient on the prediction of hepatic clearance and drug-drug inter-
actions for CYP2C9 and CYP3A4 substrates. Drug Metab Dispos 45:1008–1018.

Rowland Yeo K, Walsky RL, Jamei M, Rostami-Hodjegan A, and Tucker GT (2011) Prediction
of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacoki-
netic modelling: impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci
43:160–173.

Sanchez C, Reines EH, and Montgomery SA (2014) A comparative review of escitalopram,
paroxetine, and sertraline: are they all alike? Int Clin Psychopharmacol 29:185–196.

Stresser DM, Mao J, Kenny JR, Jones BC, and Grime K (2014) Exploring concepts of in vitro time-
dependent CYP inhibition assays. Expert Opin Drug Metab Toxicol 10:157–174.

Templeton I, Peng CC, Thummel KE, Davis C, Kunze KL, and Isoherranen N (2010) Accurate
prediction of dose-dependent CYP3A4 inhibition by itraconazole and its metabolites from
in vitro inhibition data. Clin Pharmacol Ther 88:499–505.

Templeton IE, Thummel KE, Kharasch ED, Kunze KL, Hoffer C, Nelson WL, and Isoherranen
N (2008) Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin
Pharmacol Ther 83:77–85.

Tracy TS (2006) Atypical cytochrome p450 kinetics: implications for drug discovery. Drugs R D 7:
349–363.

Venkatakrishnan K and Obach RS (2007) Drug-drug interactions via mechanism-based
cytochrome P450 inactivation: points to consider for risk assessment from in vitro data
and clinical pharmacologic evaluation. Curr Drug Metab 8:449–462.

von Moltke LL, Greenblatt DJ, Schmider J, Duan SX, Wright CE, Harmatz JS, and Shader RI
(1996) Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine,
norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 36:783–791.

Wang JS, Wen X, Backman JT, Taavitsainen P, Neuvonen PJ, and Kivistö KT (1999) Midazolam
a-hydroxylation by human liver microsomes in vitro: inhibition by calcium channel blockers,
itraconazole and ketoconazole. Pharmacol Toxicol 85:157–161.

Watanabe A, Nakamura K, Okudaira N, Okazaki O, and Sudo K (2007) Risk assessment for drug-
drug interaction caused by metabolism-based inhibition of CYP3A using automated in vitro
assay systems and its application in the early drug discovery process. Drug Metab Dispos 35:
1232–1238.

Waters NJ, Obach RS, and Di L (2014) Consideration of the unbound drug concentration in
enzyme kinetics, in Enzyme Kinetics in Drug Metabolism, pp 119–145, Humana Press,
New York City, NY.

Yadav J, Korzekwa K, and Nagar S (2018) Improved predictions of drug-drug interactions me-
diated by time-dependent inhibition of CYP3A. Mol Pharm 15:1979–1995.

Zhou S-F, Xue CC, Yu X-Q, Li C, and Wang G (2007) Clinically important drug interactions
potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of
therapeutic drug monitoring. Ther Drug Monit 29:687–710.

Address correspondence to: Dr. Swati Nagar, Department of Pharmaceu-
tical Sciences, Temple University School of Pharmacy, 3307 N Broad Street,
Philadelphia, PA 19140. E-mail: snagar@temple.edu

742 Yadav et al.

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

mailto:snagar@temple.edu
http://dmd.aspetjournals.org/


Impact of lipid partitioning on the design, analysis, and interpretation of microsomal time-

dependent inactivation  

Jaydeep Yadav, Ken Korzekwa, and Swati Nagar 

Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N Broad 

Street, Philadelphia, Pennsylvania 19140 

Supplementary Material 

Table S1. Microrate constants and errors parameterized with the MIC-M-IL model for PAR. 
Model fits are shown in Figure 4 of the main text. 

Rate constant  Values ± SE 
k1 (µM-1 min-1) 270.0 (fixed) 
k2 (min-1) 1350.0 (fixed) 
k3 (min-1) 32.9 ± 0.2 
k4 (µM-1 min-1) 270.0 (fixed) 
k5 (min-1) 164.9 ± 24.0 
k6 (min-1) 0.46 ± 0.04 
k7 (min-1) 0.05 ± 0.003 
k8 (min-1) 0.006 ± 0.001 
k9 (min-1) 0.0024 (fixed) 
 

Table S2. Microrate constants and errors parameterized with the MIC-EII-M-IL model (ITZ 
Model 1) for ITZ. Model fits are shown in Figure 5 of the main text. 

Rate constant  Values ± SE 
k1 (µM-1 min-1) 270.0 (fixed) 
k2 (min-1) 1350.0 (fixed) 
k3 (min-1) 20.5 ± 0.06 
k4 (µM-1 min-1) 810.0 (fixed) 
k5 (min-1) 19.2 ± 4.6 
k6 (min-1) 0.07 ± 0.02 
k7 (min-1) 0.06 ± 0.02 
k8 (min-1) 0.03 ± 0.007 
k9 (min-1) 0.0035 (fixed) 
k10 (µM-1min-1) 810.0 (fixed) 
k11 (min-1) 29.7 ± 13.0 
k12 (min-1) 0.01 ± 0.005 
k13 (min-1) 1.03 ± 0.28 
 



Table S3. Microrate constants and errors parameterized with the MIC-EII-M-Seq-IL model (ITZ 
Model 2) for ITZ. Model fits are shown in Figure 6 of the main text. 

Rate constant  Values ± SE 
k1 (µM-1 min-1) 270.0 (fixed) 
k2 (min-1) 1350.0 (fixed) 
k3 (min-1) 20.4 (fixed) 
k4 (µM-1 min-1) 810.0 (fixed) 
k5 (min-1) 12.3 ± 0.41 
k6 (min-1) 0.08 ± 0.02 
k7 (µM-1 min-1) 810.0 (fixed) 
k8 (min-1) 50.0 (fixed) 
k9 (min-1) 0.87 ± 0.36 
k10 (µM-1min-1) 810.0 (fixed) 
k11 (min-1)* 500.0 (fixed) 
k12 (min-1) 0.0035 (fixed) 
k13 (min-1) 1.46 ± 0.29 
k14 (min-1) 0.29 ± 0.07 
k15 (min-1)* 0.015 ± 0.003 
* Metabolite did not reach saturation, therefore either k11 or k15 had to be fixed in the model. Only the 
ratio of k15/k11 is meaningful.  

 

An exercise to estimate fumic from TDI datasets 

 

Methods: 

Since experimental fumic data are not always available, it is an interesting tangent to consider 

whether fumic can instead be estimated from a rich TDI dataset. To this end, datasets were 

generated with MM, EII, MM-IL and EII-IL models. Of these four simulated datasets, MM and 

EII did not have lipid partitioning component (i.e. fumic =1) whereas MM-IL and EII-IL had high 

lipid partitioning (fumic = 0.02). Simulations were performed to generate 100 virtual TDI datasets 

with all four models (MM, EII, MM-IL and EII-IL). These datasets were generated with the 

same parameters as mentioned earlier and with 5% error. Model fitting was performed with all 

the four models to each of the 100 datasets simulated from MM and EII models. For datasets 

generated from MM-IL and EII-IL with fumic of 0.02, only models having lipid partitioning (MM-



IL and EII-IL) were fit. While fitting lipid partitioning models (MM-IL and EII-IL) to simulated 

datasets, koff was parametrized to estimate fumic. AICc values were used for comparison of 

different models (Akaike, 1974), along with residual plots, correlation matrices, and parameter 

errors. All the simulated datasets were generated using the NDSolve function in Mathematica 

11.1.1.0 (Wolfram Research, Champagne, IL).  

Results: 

To determine if fumic can be predicted from the in-vitro TDI datasets, 100 virtual datasets were 

generated with 5% error with MM and EII models (no lipid partitioning, fumic = 1) and with MM-

IL and EII-IL (with high lipid partitioning, fumic = 0.02). It was observed that for MM dataset, 

MM-IL model estimated a fumic = 0.94 ± 0.40 (Table S4). There was 100 % convergence 

observed for both the MM-IL and EII-IL models. The fumic was estimated to be 0.92 ± 0.31 with 

EII-IL model for MM dataset. Further, with EII datasets, MM-IL model and EII-IL model 

essentially did not converge to a single solution. For the dataset simulated with MM-IL model 

and fumic =0.02, the convergence for MM-IL model was 100% with the estimate of fumic = 0.02 ± 

0.003, whereas the EII-IL model had a 56% convergence rate and a higher AICc. For the dataset 

simulated with EII-IL model with fumic = 0.02, both MM-IL and EII-IL models converged, but 

the EII-IL model had a lower AICc and provided an estimate of fumic = 0.02 ± 0.009. 

Table S4. Results for parameterizing fumic with MM-IL and EII-IL datasets with 5% error.  

Simulated with Parameters MM-IL EII-IL 

MM 

KI,u = 0.1 

kinact = 0.1 

fumic = 1.0 

KI,u 0.1 ± 0.005 KI,u1= 0.1 ± 0.01 , KI,u2= 12.12 ± 4.05 

kinact 0.1 ± 0.002 0.11 ± 0.003 

kinact/KI,u 1.04 ± 0.06 kinact/KI,u1 = 1.1 

% convergence 100 100 



Average AICc -636 -632 

Average r2 0.997 0.997 

fumic 0.94 ± 0.40 0.92 ± 0.31 

EII 

KI,u1 = 0.1 

KI,u2 = 1 

kinact = 0.14 

fumic = 1.0 

KI,u 0.03 ± 0.002 Cannot determine a  

kinact 0.26 ± 0.01 Cannot determine a  

kinact/KI,u 8.75 ± 0.61 Cannot determine a  

% convergence 6 100 

Average AICc -694 Cannot determine a  

Average r2 0.997 Cannot determine a  

fumic 0.03 ± 0.00 Cannot determine a  

MM-IL 

KI,u = 0.1 

kinact = 0.1 

fumic = 0.02 

KI,u 0.10 ± 0.01 
KI,u1 = 0.12 ± 0.03 

KI,u2 = 31.5 ± 23.1 

kinact 0.1 ± 0.002 0.1 ± 0.007 

kinact/KI,u 1.01 ± 0.14 kinact/KI,u1 = 0.86 

% convergence 100 56 

Average AICc -619 -615 

Average r2 0.998 0.998 

fumic 0.02 ± 0.003 0.02±0.006 

EII-IL 

KI,u1 = 0.1 

KI,u2 = 1 

kinact = 0.14 

KI,u 0.008 ± 0.004
KI,u1 = 0.1 ± 0.02 

KI,u2 = 1.2 ± 0.48 

kinact 1.9 ± 1.0 0.14 ± 0.05 

kinact/KI,u 226 ± 164  kinact/KI,u1 = 1.35 



fumic = 0.02 % convergence 98 100 

Average AICc -455 -614 

Average r2 0.983 0.998 

 fumic 
0.00003 ± 

0.0005 

0.024 ± 0.009 

aLocal minima for different initial estimates of fumic prevent identification of the best solution. 

 

Finally, additional experimental in-vitro TDI datasets (Yadav et al., 2018) were used to estimate 

fumic (Table S5). In some cases, kinetic models used for estimation of TDI parameters were also 

able to estimate fumic along with TDI parameters. There was minimal change in the estimate of 

TDI parameters when fumic was parameterized simultaneously with TDI parameters (data not 

shown). However, it was not possible to estimate fumic for all inactivators.  For troleandomycin 

(TAO), N-demethyl diltiazem (NDD), diltiazem (DTZ), verapamil (VER) and ITZ, the kinetic 

models did not converge when koff was parameterized. For PAR, erythromycin (ERY), N-

demethyl erythromycin (NDE) and norverapamil (NV), models converged and the estimated fumic 

was within 1.5-fold of the measured fumic. 

Table S5. Prediction of fumic from the in-vitro TDI datasets. Predicted fumic compared with the 

measured fumic (Yadav et al., 2018).  

Compound Model fumic measured fumic estimated 

DTZ Seq-MIC-EII-M-IL 0.85 DNC 

ERY MIC-IL 0.563 0.98 ± 0.001 

ITZ MIC-EII-M-IL  0.009a DNC 

NDD MIC-IL 0.55 DNC 



NDE MIC-M-IL 0.51 0.75 ± 0.15 

NV MIC-EII-IL 0.71 0.88 ± 0.001 

PAR MIC-M-IL 0.24 0.23 ± 0.04 

TAO MIC-EII-IL 0.442a DNC 

VER Seq-MIC-EII-M-IL 0.32 DNC 

DNC: did not converge. aNot measured in-house. 

Discussion: 

Since unbound inhibitor concentrations upon dilution can be predicted from fumic values, it is 

theoretically possible to estimate fumic from a dilution TDI assay. A tangential goal of this study 

was therefore to determine whether fumic could be estimated when modeling in-vitro TDI 

datasets. Models representing two extreme cases were chosen to simulate datasets, one without 

lipid partitioning (MM or EII, or fumic=1), and the second with high partitioning (MM-IL and EII-

IL each with fumic of 0.02). MM-IL and EII-IL models were fit to each of the datasets (Table S4). 

For the MM dataset with fumic=1, MM-IL and EII-IL models estimated fumic to be 0.94 ± 0.4 and 

0.92 ± 0.31 respectively. This is expected because the upper boundary for fumic is 1, and any error 

in the data will cause the estimated fumic to be <1. For the EII dataset with fumic=1, the MM-IL 

model essentially never converged. For the same dataset with the EII-IL model, local minima for 

different initial estimates of fumic prevented identification of the best solution. For example, for 

some datasets with an initial fumic estimate of 0.5, a final parameter value of 0.5 would be 

returned, with all parameters well defined, and no obvious covariance among parameters. For the 

MM-IL and EII-IL datasets with fumic=0.02, the correct models were always identifiable, and fumic 

was well predicted. Thus, while it appears that fumic can be estimated from in vitro TDI modeling 

when partitioning is high, it is best to experimentally measure the fumic when complex kinetics 



are involved. Data in Table S5 corroborate this conclusion. Whereas for some compounds (e.g. 

PAR and NV) the fumic was well predicted, others had high errors or did not converge.  

 

 

 


