Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Regulation of Intestinal UDP-Glucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation

André A. Weber, Elvira Mennillo, Xiaojing Yang, Lori W.E. van der Schoor, Johan W. Jonker, Shujuan Chen and Robert H. Tukey
Drug Metabolism and Disposition January 2021, 49 (1) 12-19; DOI: https://doi.org/10.1124/dmd.120.000240
André A. Weber
Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (A.A.W., E.M., X.Y., S.C., R.H.T.) and Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (L.W.E.v.d.S., J.W.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elvira Mennillo
Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (A.A.W., E.M., X.Y., S.C., R.H.T.) and Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (L.W.E.v.d.S., J.W.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaojing Yang
Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (A.A.W., E.M., X.Y., S.C., R.H.T.) and Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (L.W.E.v.d.S., J.W.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lori W.E. van der Schoor
Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (A.A.W., E.M., X.Y., S.C., R.H.T.) and Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (L.W.E.v.d.S., J.W.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johan W. Jonker
Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (A.A.W., E.M., X.Y., S.C., R.H.T.) and Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (L.W.E.v.d.S., J.W.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shujuan Chen
Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (A.A.W., E.M., X.Y., S.C., R.H.T.) and Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (L.W.E.v.d.S., J.W.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert H. Tukey
Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California (A.A.W., E.M., X.Y., S.C., R.H.T.) and Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (L.W.E.v.d.S., J.W.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

UDP-glucuronosyltransferase (UGT) 1A1 is the only transferase capable of conjugating serum bilirubin. However, temporal delay in the development of the UGT1A1 gene leads to an accumulation of serum bilirubin in newborn children. Neonatal humanized UGT1 (hUGT1) mice, which accumulate severe levels of total serum bilirubin (TSB), were treated by oral gavage with obeticholic acid (OCA), a potent FXR agonist. OCA treatment led to dramatic reduction in TSB levels. Analysis of UGT1A1 expression confirmed that OCA induced intestinal and not hepatic UGT1A1. Interestingly, Cyp2b10, a target gene of the nuclear receptor CAR, was also induced by OCA in intestinal tissue. In neonatal hUGT1/Car−/− mice, OCA was unable to induce CYP2B10 and UGT1A1, confirming that CAR and not FXR is involved in the induction of intestinal UGT1A1. However, OCA did induce FXR target genes, such as Shp, in both intestines and liver with induction of Fgf15 in intestinal tissue. Circulating FGF15 activates hepatic FXR and, together with hepatic Shp, blocks Cyp7a1 and Cyp7b1 gene expression, key enzymes in bile acid metabolism. Importantly, the administration of OCA in neonatal hUGT1 mice accelerates intestinal epithelial cell maturation, which directly impacts on induction of the UGT1A1 gene and the reduction in TSB levels. Accelerated intestinal maturation is directly controlled by CAR, since induction of enterocyte marker genes sucrase-isomaltase, alkaline phosphatase 3, and keratin 20 by OCA does not occur in hUGT1/Car−/− mice. Thus, new findings link an important role for CAR in intestinal UGT1A1 induction and its role in the intestinal maturation pathway.

SIGNIFICANCE STATEMENT Obeticholic acid (OCA) activates FXR target genes in both liver and intestinal tissues while inducing intestinal UGT1A1, which leads to the elimination of serum bilirubin in humanized UGT1 mice. However, the induction of intestinal UGT1A1 and the elimination of bilirubin by OCA is driven entirely by activation of intestinal CAR and not FXR. The elimination of serum bilirubin is based on a CAR-dependent mechanism that facilitates the acceleration of intestinal epithelium cell differentiation, an event that underlies the induction of intestinal UGT1A1.

Footnotes

    • Received September 4, 2020.
    • Accepted October 14, 2020.
  • This work was supported by National Institutes of Health Grants [ES010337] and [GM126074] (to R.H.T.) and [R21-AI135677] (to S.C.).

  • https://doi.org/10.1124/dmd.120.000240.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 49 (1)
Drug Metabolism and Disposition
Vol. 49, Issue 1
1 Jan 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of Intestinal UDP-Glucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

CAR Activation by OCA Induces UGT1A1 and IEC Maturation

André A. Weber, Elvira Mennillo, Xiaojing Yang, Lori W.E. van der Schoor, Johan W. Jonker, Shujuan Chen and Robert H. Tukey
Drug Metabolism and Disposition January 1, 2021, 49 (1) 12-19; DOI: https://doi.org/10.1124/dmd.120.000240

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

CAR Activation by OCA Induces UGT1A1 and IEC Maturation

André A. Weber, Elvira Mennillo, Xiaojing Yang, Lori W.E. van der Schoor, Johan W. Jonker, Shujuan Chen and Robert H. Tukey
Drug Metabolism and Disposition January 1, 2021, 49 (1) 12-19; DOI: https://doi.org/10.1124/dmd.120.000240
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Material and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
  • Gene expression profile of human intestinal epithelial cells
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics