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ABSTRACT

Cytochrome P450 3A (CYP3A) is a frequent target for time-depen-
dent inhibition (TDI) that can give rise to drug-drug interactions
(DDI). Yet many drugs that exhibit in vitro TDI for CYP3A do not
result in DDI. There were 23 drugs with published clinical DDI eval-
uated for CYP3A TDI in human liver microsomes (HLM) and hepato-
cytes (HHEP), and these data were used in static and dynamic
models for projecting DDI caused by inactivation of CYP3A in both
liver and intestine. TDI parameters measured in HHEP, particularly
the maximal rate of enzyme inactivation, were generally lower than
those measured in HLM. In static models, the use of estimated
average unbound organ exit concentrations offered the most accu-
rate projections of DDI with geometric mean fold errors of 2.0 and
1.7 for HLM and HHEP, respectively. Use of maximum organ entry
concentrations yielded marked overestimates of DDI. When evalu-
ated in a binary fashion (i.e., projection of DDI of 1.25-fold or
greater), data from HLM offered the greatest sensitivity (100%) and
specificity (67%) and yielded no missed DDI when average
unbound organ exit concentrations were used. In dynamic physio-
logically based pharmacokinetic modeling, accurate projections of

DDI were obtained with geometric mean fold errors of 1.7 and
1.6 for HLM and HHEP, respectively. Sensitivity and specificity
were 100% and 67% when using TDI data generated in HLM and
Simcyp modeling. Overall, DDI caused by CYP3A-mediated TDI
can be reliably projected using dynamic or static models. For
static models, average organ unbound exit concentrations
should be used as input values otherwise DDI will be markedly
overestimated.

SIGNIFICANCE STATEMENT

CYP3A time-dependent inhibitors (TDI) are important in the design
and development of new drugs. The prevalence of CYP3A TDI is
high among newly synthesized drug candidates, and understand-
ing the potential need for running clinical drug-drug interaction
(DDI) studies is essential during drug development. Ability to reli-
ably predict DDI caused by CYP3A TDI has been difficult to achieve.
We report a thorough evaluation of CYP3A TDI and demonstrate
that DDI can be predicted when using appropriate models and input
parameters generated in human liver microsomes or hepatocytes.

Introduction

Alterations in the catalytic activities of cytochrome P450 enzymes
represent a common mechanism of drug-drug interactions (DDI).

Administration of one drug (the precipitant or perpetrator) which inhib-
its, inactivates, or induces the expression of a P450 enzyme will lead to
changes in exposure to a second drug (the object or victim) that is
cleared by that enzyme. The scientific and medical literature describe
myriad examples of DDI that arise via this mechanism, and a large pub-
lic database that summarizes the knowledge of DDI has been assembled
(https://didb.druginteractionsolutions.org/).
Our understanding of the human P450 enzymes and their substrate

and inhibitor specificities, along with the development of methods and
algorithms to translate in vitro drug metabolism data to in vivo
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ABBREVIATIONS :AUC, area under the concentration versus time curve; AUCR, area under the plasma concentration-time curve ratio in the
inhibited and control state; Cavg, average concentration values; Cavg,portal,u, unbound average portal vein concentration; Cavg,systemic,u, unbound
average systemic concentration; Cavg,u, unbound average concentration values; Cmax,portal,u, unbound steady state maximum portal vein con-
centration; CYP3A, cytochrome P450 3A; DDI, drug-drug interaction; Fa, fraction absorbed after oral dose; FN, false negative; FP, false posi-
tive; fu, fraction unbound; fu,mic, free fraction determined in microsomes; fu,plasma, plasma free fraction; GMFE, geometric mean absolute fold
error; HHEP, human hepatocyte; HLM, human liver microsome; [I], inhibitor concentration; [I]g, intestinal inhibitor concentration; [I]h, liver inhibi-
tor concentration; iQC, inhibitor quality control; ka, inhibitor absorption rate constant; kdeg, enzyme degradation rate constant; Ki, reversible inhi-
bition constant; KI, time-dependent inhibition constant; KI,u, time-dependent inhibition constant, unbound; kinact, maximal rate of enzyme
inactivation; kobs, rate constant for inhibition; Kp,uu, unbound partition coefficient in hepatocyte; LC-MS/MS, liquid chromatography-tandem mass
spectrometry; MBI, mechanism-based inactivator; NPE, negative predictive error; NPV, negative predictive value; P450, cytochrome P450;
PBPK, physiologically based pharmacokinetic modeling; PPE, positive predictive error; PPV, positive predictive value; RMSFE, root mean
square fold error; TDI, time-dependent inhibition\inhibitor; TN, true negative; TP, true positive; Vss, steady-state volume of distribution; WEM,
Williams’ E medium.
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pharmacokinetics through the use of equations and physiologically
based pharmacokinetic (PBPK) modeling platforms, has led to the routine
collection of in vitro P450 inhibition data. DDI are an undesired phenome-
non in new drugs, and in vitro P450 inhibition data are used in drug design
and the selection of candidate compounds for further development as drugs.
Such data are also used in developing strategies to evaluate DDI in the clin-
ical phase of drug development, to decide what clinical pharmacokinetic
studies need to be conducted in anticipation of observing a DDI (Grimm
et al., 2009; Zhang et al., 2010; FDA, 2020).
Among the human P450 enzymes, CYP3A is the most important,

since it is involved in the metabolic clearance of many drugs (Guenger-
ich, 1995; Zhou, 2008). Thus, this enzyme is of focus for in vitro evalu-
ation of the potential for DDI. Furthermore, this enzyme is prone to
time-dependent inhibition (TDI), wherein the degree of inhibition
observed increases with increasing incubation time. Some of the most
notorious perpetrators of DDI are TDI of CYP3A, including clarithro-
mycin, verapamil, diltiazem, and mibefradil, among others (Backman
et al., 1994; Gorski et al., 1998; Mullins et al., 1998; Jones et al., 1999).
In fact, mibefradil was withdrawn from clinical use due to CYP3A TDI
(Prueksaritanont et al., 1999). Among CYP3A TDI, most are mecha-
nism-based inactivators (MBI) in that the compound must be acted
upon by the enzyme for the inhibition to occur. In P450 incubations,
TDI and MBI can be distinguished in that the latter require the inclusion
of NADPH, the cosubstrate required for P450 catalysis. MBI of P450
enzymes can occur via several biochemical mechanisms, and the most
well known are 1) the formation of a complex between a metabolic
intermediate of the inactivator and the heme iron (referred to as an M-I
complex); 2) adduction of the inactivator to porphyrin, or 3) adduction
of the inactivator to the protein backbone of the enzyme. Irrespective of
the biochemical mechanism of MBI, all three will result in permanent
cessation of the activity of enzyme molecules and DDI, with DDI abat-
ing only upon stopping treatment with the perpetrator drug and resyn-
thesis of the enzyme in vivo (Zhou et al., 2004). Thus, during the drug
research and development processes, considerable attention is focused
on TDI of CYP3A to avoid this unwanted property.
Observations in our laboratories arising through the routine deploy-

ment of CYP3A TDI assays (unpublished observations) and those
reported by others (Zimmerlin et al., 2011) have shown the preponder-
ance of CYP3A TDI among test compounds to be high. Yet, for several
compounds that have shown CYP3A TDI and which were predicted to
demonstrate DDI, the result in clinical pharmacokinetic studies with
sensitive CYP3A marker substrates, such as midazolam, showed no
DDI (Ring et al., 2005; Wang et al., 2013). A reason for this mismatch
is currently unknown. Others have attempted to engineer the conditions
of in vitro incubations in an attempt to better represent the in vivo situa-
tion by the inclusion of plasma in the in vitro incubations (Mao et al.,
2011, 2012). In a previous report, it was demonstrated that several drugs
that showed measurable TDI of CYP3A in human liver microsomes
(HLM) and hepatocytes (HHEP) do not cause DDI in vivo (Eng et al.,
2021). In that work, the focus was on the use of CYP3A TDI data in an
early drug research stage when drug design teams are seeking and
selecting compounds lacking potential TDI. The conclusion from that
study was that a cutoff for the observed inactivation rate constant, kobs
(run at a test concentration of 30 mM), is needed under which no com-
pounds will cause in vivo DDI. Even with such a cutoff, several drugs
with kobs over that boundary were still not perpetrators of DDI. Such a
boundary can be considered oversimplified, as it is known that other
factors besides kobs will influence whether a DDI will be observed (e.g.,
dose and exposure). Nevertheless, this was an important finding and
defines a better understanding of how to use in vitro CYP3A TDI data
in decision making.

In the present report, the objective was to build upon the observations
from Eng et al., 2021 and query the fidelity of CYP3A TDI data in the
projection of DDI using measurements of kinact and KI generated from
both HLM and HHEP assays, along with several other necessary input
values (e.g., various exposure parameters, plasma free fraction, esti-
mated intestinal exposure, among others). Simple equations that relate
in vitro TDI data to in vivo DDI (a.k.a. static methods) (Ernest et al.,
2005; Obach et al., 2007; Grimm et al., 2009) as well as PBPK model-
ing (a.k.a. dynamic methods) (Rowland Yeo et al., 2011; Mao et al.,
2013) were used, and various input parameters were evaluated. These
methods were tested with 23 drugs that have reported clinical pharma-
cokinetic studies with sensitive CYP3A marker substrates (mostly mid-
azolam). This represents the largest dataset for this purpose generated
under the same experimental conditions. The results have shown that
in vitro TDI data tend to over-project DDI, but that with application of
established input parameters, success can be obtained using either HLM
or HHEP.

Materials and Methods

Materials
Research was conducted on human tissue acquired from a vendor that was

verified as compliant with internal policies, including institutional review board/
independent ethics committee approval. Pooled HLM, consisting of 36 male and
14 female donors, were purchased from Sekisui XenoTech (Kansas City, KS).
Cryopreserved pooled HHEP, consisting of 4 male and 6 female donors, pooled
mixed-gender human plasma collected with K3EDTA, and male human liver
homogenate were purchased from BioIVT (Westbury, NY). Monobasic and
dibasic potassium phosphate buffers, magnesium chloride, NADPH, HEPES,
Dulbecco’s PBS, and DMSO were purchased from Sigma (St. Louis, MO).
M-PERTM buffer was purchased from Thermo Fisher Scientific (Waltham, MA).
Midazolam was purchased from USP (Rockville, MD). 1'-Hydroxymidazolam
and [2H4]1'-hydroxymidazolam were synthesized at Pfizer (Groton, CT). Wil-
liams' E medium was purchased from Gibco (Dublin, Ireland). Commercially
obtained chemicals and solvents were of high-performance liquid chromatogra-
phy or analytical grade. Tested drugs (typical purity >95%) were either synthe-
sized internally at Pfizer (Groton, CT) or purchased from one of the following
sources: Sigma-Aldrich (St. Louis, MO), Toronto Research Chemicals (North
York, Ontario, Canada), MedChemExpress (Monmouth Junction, NJ), TCI (Port-
land, OR), or APExBio (Houston, TX).

Identification of Test Drugs
The University of Washington Drug Interaction Database (https://www.

druginteractionsolutions.org) was used to compile a list of drugs for which clini-
cal CYP3A interaction studies were conducted (Table 1). Studies in which mid-
azolam was dosed via the oral route were preferred. In a couple of instances,
studies containing midazolam dosed via the intravenous route or other CYP3A
probe substrates were chosen. The magnitude of DDI (AUCR) was determined
based on the ratio of the probe substrate AUC in the presence (area under the
concentration versus time curve when coadministered with an inhibitor) and
absence (AUC) of the test drug. For drugs where more than one interaction study
was published at the same dose and route, the weighted average AUCR based on
the number of subjects per study was calculated using eq. 1 below:

W 5
Sn

i51wiXi

Sn
i51wi

(1)

where the weighted average AUCR (W) is the quotient between the
summation of the product of each observed mean AUCR (Xi) and the
number of subjects in that study (wi) divided by the total number of
subjects in all studies.

Binding to Plasma, Liver Microsomes, and Liver Homogenate
Binding of the test drugs to human plasma, liver microsomes, and liver

homogenate were determined based on methods previously described by Di
et al., 2017. Briefly, binding experiments were performed by equilibrium
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dialysis. The matrix was spiked with 1 mM of test drug (donor) and allowed to
dialyze against Dulbecco’s PBS (receiver) for a duration of 6 hours with a
12000–14000 molecular weight cutoff membrane in a humidified incubator sup-
plemented with 5% CO2 at 37�C. All incubations were performed in quadrupli-
cate. At equilibrium, matrix and buffer samples were collected and matrix
matched before addition of 4 volumes of acetonitrile containing a cocktail of
internal standards (50 ng/ml tolbutamide and 5 ng/ml terfenadine). Samples were
vortexed and centrifuged for 5 minutes at approximately 2300 x g at room tem-
perature. The supernatant was collected and analyzed directly by LC-MS/MS
(method details are in Supplemental Table 2). Determination of the fraction
unbound (fu) in human plasma, liver microsomes, and liver homogenate were
determined by methods described in (Riccardi et al., 2017).

Human Hepatocyte Unbound Partition Coefficient
The unbound partition coefficient in HHEP for each of the test drugs was deter-

mined following the methods described by Riccardi et al., 2018. Briefly, HHEP
(0.5 million hepatocytes/ml) suspended in WEM supplemented with L-glutamine
and HEPES (50 mM) were incubated with 1 mM of test drug for 2 hours. At the
end of the incubation, the HHEP were centrifuged at 40 x g for approximately 5
minutes to pellet the cells. The supernatant was reserved for analysis. The pellet
was washed three times with ice-cold PBS, and the final pellet was lysed with M-
PERTM buffer. The reserved supernatant and lysate were matrix matched before
the addition of 4 volumes of acetonitrile containing a cocktail of internal standards
(200 ng/ml diclofenac and 25 ng/ml indomethacin). Samples were vortexed and
centrifuged for 5 minutes at approximately 2300 x g at room temperature. The
supernatant was mixed with an equal volume of water containing 0.2% formic acid
and analyzed directly by LC-MS/MS (Supplemental Table 2). In vitro Kp,uu of the
test drugs in HHEP were calculated by methods described by Riccardi et al., 2018.

Partitioning into hepatocytes was demonstrated to be fairly rapid, and equilibrium
was generally achieved by 10minutes (Treyer et al., 2018, 2019).

IC50 Determination in Human Liver Microsomes and Human Hepatocytes
HLM and HHEP were used to determine the IC50 of CYP3A enzyme activity.

HLM incubations (0.01 mg/ml) were supplemented with MgCl2 (3.3 mM) and
NADPH (1.3 mM) in potassium phosphate buffer (100 mM, pH 7.4). HHEP
(0.2 million hepatocytes/ml) were suspended in WEM supplemented with L-glu-
tamine and HEPES (50 mM). Drug stocks, at incrementing concentrations, were
prepared at 100 times the final incubation concentration (up to 100 mM final) in
a mixture of organic and aqueous solvents, typically acetonitrile and water
(Supplemental Table 1). Midazolam, the probe substrate, was prepared at 10x
the final concentration (2 to 3 mM, corresponding to KM in HLM and HHEP,
respectively) in either potassium phosphate buffer or WEM, for HLM or HHEP,
respectively. The final total solvent in the incubations was #1%. The incubation
was initiated with the addition of drug stock immediately followed by the probe
substrate. After a 4-minute incubation in HLM or a 10-minute incubation in
HHEP, the reaction was terminated by the addition of either two or four volumes
of acetonitrile containing internal standard (100 ng/ml [2H4]1'-hydroxymidazo-
lam) for HLM and HHEP incubations, respectively. All reactions were carried
out at 37�C, at a final volume of 200 ml, in duplicate. Samples were vortexed
and centrifuged for 5 minutes at approximately 2300 x g at room temperature.
The supernatant was mixed with an equal volume of water containing 0.2% for-
mic acid and analyzed directly by LC-MS/MS (methods described below). A
standard curve (0.250–250 nM) and inhibitor quality control (iQC, 50 nM) of
1'-hydroxymidazolam was prepared in duplicate at the final protein concentration
in the assay for either HLM or HHEP. The inhibitor concentration included in
the iQC was determined based on the highest concentration tested in the assay.

TABLE 1

Summary of observed clinical drug-drug interactions for CYP3A cleared drugs

Drug Name Inhibitor Dose Substrate Doseb Clinical Interaction (AUCR) Clinical Interaction Reference

Azithromycin 500 mg once a day; 3 d 15 mg oral midazolam 1.23a (Yeates et al., 1996;
Zimmermann et al., 1996)

Boceprevir 800 mg three times a day; 6 d 4 mg oral midazolam 5.05 (FDA, 2011)
Carfilzomib 27 mg/m2 i.v.; various 2 mg oral midazolam 1.10 (Wang et al., 2013)
Clarithromycin 500 mg twice a day; 7 d 4 mg oral midazolam 6.69a (Gorski et al., 1998;

Gurley et al., 2006;
Gurley et al., 2008;
Quinney et al., 2008;
Prueksaritanont et al.,

2017)
Conivaptan 40 mg twice a day; 5 d 2 mg oral midazolamc 5.76 (FDA, 2005)
Diltiazem 60 mg three times a day; 2 d 2 mg oral midazolam 3.93a (Backman et al., 1994;

Friedman et al., 2011)
Disulfiram 500 mg single dose 1 mg i.v. midazolam 1.05 (Kharasch et al., 1999)
Eplerenone 100 mg once a day; 6 d 10 mg oral midazolam 0.96 (Cook et al., 2004)
Erythromycin 500 mg three times a day; 7 d 4 mg oral midazolam 4.12a (Olkkola et al., 1993;

Zimmermann et al., 1996)
Imatinib 400 mg once a day; 7 d 40 mg oral simvastatin 2.92 (O'Brien et al., 2003)
Midostaurin 100 mg single dose 4 mg oral midazolam 1.00 (Dutreix et al., 2013)
Nelfinavir 1250 mg twice a day; 14 d 2 mg oral midazolam

1 mg i.v. midazolam
4.29a

1.83
(Kirby et al., 2011)

Nitrendipine 20 mg single dose 0.07 mg/kg i.v. plus
infusion midazolam

0.93 change in CL (Handel et al., 1988)

Panobinostat 20 mg every other day; 15 d 5 mg oral midazolam 1.04 (Einolf et al., 2017)
Paroxetine 20 mg once a day; 15 d 60 mg oral terfenadined 0.97 (Martin et al., 1997)
Propiverine 15 mg twice a day; 7 d 2 mg oral midazolam 1.46 (Tomalik-Scharte et al.,

2005)
Propranolol 40 mg four times a day; 2 d 0.5 mg oral triazolam 0.89 (Friedman et al., 1988)
Simvastatin 10 mg once a day; 14 d 15 ug/kg oral midazolam 1.24 (Kokudai et al., 2009)
Tabimorelin 3 mg/kg once a day; 7 d 7.5 mg oral midazolam 1.93 (Zdravkovic et al., 2003)
Tadalafil 10 mg once a day; 14 d 15 mg oral midazolam 0.90 (Ring et al., 2005)
Telaprevir 750 mg three times a day; 16 d 2 mg oral midazolam

0.5 mg i.v. midazolam
13.5
4.92

(Garg et al., 2012)

Terfenadine 120 mg once a day; 3 d 10 mg oral buspirone 1.19 (Lamberg et al., 1999)
Verapamil 80 mg three times a day; 2 d 15 mg oral midazolam 2.92 (Backman et al., 1994)

aAUCR was calculated as a weighted average AUCR based on number of subjects in each study at the same dose per route (eq. 1).
bSubstate (single dose) was given at the final day of inhibitor dose.
cSubstrate (once a day), 5 days.
dSubstrate (twice a day), days 8 to 15, 8 days.

Drug Interactions for CYP3A Time-Dependent Inhibitors 949
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Standards and iQC samples were processed in the same manner as the incubation
samples.

Time-Dependent Inhibition in Human Liver Microsomes
TDI of CYP3A was measured in HLM (0.3 mg/ml) supplemented with

MgCl2 (3.3 mM) and NADPH (1.3 mM) in potassium phosphate buffer (100
mM, pH 7.4). Drug stock solutions, at incrementing concentrations up to 300
mM (final), were prepared at 100 times the final incubation concentration in a
mixture of organic and aqueous solvents, usually acetonitrile and water
(Supplemental Table 1). The final total solvent in the primary incubations was
#1%. The incubation was initiated with the addition of drug stock to the micro-
somal mixture. At various time points, generally up to 40 minutes, an aliquot of
the mixture was transferred to an activity incubation mixture containing midazo-
lam (20.9 mM, 10-fold KM), MgCl2 (3.3 mM), and NADPH (1.3 mM) in potas-
sium phosphate buffer (100 mM, pH 7.4), generally resulting in a 20-fold
dilution. After 6 minutes, the activity reaction was terminated by the addition of
two volumes of acetonitrile containing internal standard (100 ng/ml [2H4]
1'-hydroxymidazolam). All reactions were carried out at 37�C, at a final volume
of 200 ml, in duplicate. Samples were vortexed and centrifuged for 5 minutes at
approximately 2300 x g at room temperature. The supernatant was mixed with
an equal volume of water containing 0.2% formic acid and analyzed directly by
LC-MS/MS (methods described below). A standard curve (0.250–250 nM) and
inhibitor quality control (iQC, 50 nM) of 1'-hydroxymidazolam was prepared in
duplicate at the final protein concentration in the activity assay. The inhibitor
concentration included in the iQC was determined based on the highest concen-
tration tested in the assay divided by the fold-dilution of the primary to second-
ary incubation. Standards and iQC samples were processed in the same manner
as the incubation samples. For several drugs, assay conditions were modified due
to rapid inactivation or potent inhibition at the initial time point. Modifications
to the incubation conditions can be found in Supplemental Table 1.

Time-Dependent Inhibition in Suspension Human Hepatocytes
TDI of CYP3A was measured in HHEP in a manner similar to that described

by Chen et al., 2011. Drug stock solutions, at concentrations up to 300 mM
(final), were prepared at 10-times the final incubation concentration in a mixture
of organic and aqueous solvents, usually acetonitrile and water (Supplemental
Table 1). The incubation was initiated with the addition of drug stock to HHEP
(0.45 million hepatocytes/ml) suspended in WEM supplemented with L-gluta-
mine and HEPES (50 mM), in a total volume of 50 ml. At various time points
(typically up to 120 minutes unless otherwise stated), a 200 ml aliquot of the
activity incubation mixture consisting of midazolam (final concentration 30 mM,
approximately 10-fold KM) in media was added to the incubation wells, resulting
in a 5-fold dilution of the primary incubation. After a 20-minute activity reaction,
the incubation was terminated by the addition of two volumes of acetonitrile con-
taining internal standard (100 ng/ml [2H4]1'-hydroxymidazolam). All reactions
were carried out at 37�C in a humidified incubator (75% relative humidity, 5%
CO2) in duplicate. The final total solvent in the primary incubations was #1%.
Samples were vortexed and centrifuged for 5 minutes at approximately 2300 x g
at room temperature. The supernatant was mixed with an equal volume of water
containing 0.2% formic acid and analyzed directly by LC-MS/MS (methods
described below). A standard curve (0.58–1000 nM) and inhibitor quality control
(iQC, 100 nM) of 1'-hydroxymidazolam was prepared in duplicate at the final
protein concentration in the activity assay. The inhibitor concentration included
in the iQC was determined based on the highest concentration tested in the assay
divided by the fold-dilution of the primary to secondary incubation. Standards
and iQC samples were processed in the same manner as the incubation samples.
For several drugs, assay conditions were modified due to rapid inactivation or
solubility limitations of the test drug. Modifications to the incubation conditions
can be found in Supplemental Table 1.

LC-MS/MS Methodology for the Quantitation of 1'-Hydroxymidazolam
LC-MS/MS analysis was conducted on either a Sciex 5500 or 6500 triple

quadrupole mass spectrometer (Framingham, MA) fitted with an electrospray ion
source operated in positive ion mode using multiple reaction monitoring. An
Agilent 1290 binary pump (Santa Clara, CA) with a CTC Leap autosampler
(Leap Technology, Carrboro, NC) was programmed to inject 10 ml of sample on
a Halo 2.7 mm C18 2.1x30 mm column (Advanced Materials Technology, Wil-
mington, DE). A binary gradient was employed using 0.1% (v/v) formic acid in

water (mobile phase A) and 0.1% (v/v) formic acid in acetonitrile (mobile phase
B) at a flow rate of 0.5 ml/min. Mass-to-charge transitions for analytes 1'-hydrox-
ymidazolam and [2H4]1'-hydroxymidazolam were 342.2 ! 324.2 and 346.2 !
328.2, respectively. Analytes were quantified against a standard curve using Ana-
lyst software (Sciex). A linear regression with either a weighting of 1/x or 1/x2

was used. Standards and iQCs were accepted if the calculated concentrations
were ±25% of their nominal concentration. Acceptance of the iQC demonstrates
that the inhibitor did not interfere with 1'-hydroxymidazolam signal on the MS.

Data Analysis
Estimation of Ki. Percent activity remaining of the CYP3A enzyme was

determined by normalizing the concentration of 1'-hydroxymidazolam in the
presence of varying concentrations of test drug to the concentration of 1'-hydrox-
ymidazolam in the solvent control. The concentration of inhibitor corresponding
to a 50% decrease in activity (IC50) was generated using GraphPad Prism 8 (La
Jolla, CA). Since inhibition experiments were conducted at the KM of midazo-
lam, Ki was estimated as IC50 divided by two (IC50/2) assuming competitive
inhibition (Cheng and Prusoff, 1973). Free Ki was determined by correcting Ki

with the free fraction determined in microsomes (fu,mic) or Kp,uu for HLM or
HHEP experiments, respectively.

Estimation of KI and kinact. Data analysis methods previously described by
Yates et al., 2012 were used for the estimation of kobs, KI, and kinact. Briefly, kobs
was determined by normalizing the 1'-hydroxymidazolam concentration in each
sample to that of the mean solvent control concentration in the initial time point,
plotting the natural log of percent remaining activity versus preincubation time,
and then calculating the slope of the line (�kobs) using the initial linear portion
of the curve. A statistical test was done at each concentration of test drug to
determine whether kobs was statistically different from the within-experiment sol-
vent control, i.e., a parallel lines test, shown in eq. 2.

z 5
kobs½I� � kobs½0lM�
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

kobs½I�1SE2
kobs½0lM�

q (2)

Here, kobs[I], kobs[0mM], and S.E. represent the inactivation rate for an inhibitor
at a single concentration, inactivation rate with solvent control, and standard
error, respectively. A statistically significant TDI is defined when the parallel
lines test yields a P value of <0.05. When possible, KI and kinact parameters
were determined using nonlinear regression of the three-parameter Michaelis-
Menten equation below:

kobs 5 kobs½0lM�1
kinact � ½I�
KI1½I� (3)

[I] represents the concentrations of the test drug in the primary incuba-
tion, kinact is the maximal inactivation rate, and KI is the inactivator con-
centration at half kinact.

For compounds where substrate inhibition was observed at the higher
concentrations, nonlinear regression of a four-parameter substrate inhibi-
tion model (eq. 4) was used to fit the curve.

kobs 5 kobs 0lM½ �1
kinact � ½I�

KI 1 ½I� � 11½I�
Ks

� � (4)

In the equation above, Ks is a dissociation constant for binding, enabling a
better fit of the data.

In six instances, the relationship between kobs and [I] did not yield enough of
a hyperbola to reliably estimate values for KI and kinact. For these, a composite
slope of the initial linear portion of the kobs vs [I] curve was determined to repre-
sent the ratio of kinact/KI. The static model equations and Simcyp require individ-
ual parameters as input values. To accomplish this, KI,u was arbitrarily set at a
high value of 1 mM, and the slope was used to calculate kinact. This value for
kinact along with the value of 1 mM for KI,u were then used as input values for
DDI projections, under the reasonable assumption that [I]in vivo � 1 mM. For
compounds where KI could be determined, KI,u was determined by correcting KI

with fu,mic or Kp,uu for HLM or HHEP experiments, respectively. Analyses were
performed using Microsoft Excel (Redmond, WA) and GraphPad Prism 8.

Predicting Magnitude of DDIs. The magnitude of DDI (AUCR) can be
described as a ratio of the area under the concentration versus time curve when
coadministered with an inhibitor divided by AUC when administered alone.
Mathematical models to determine the extent of DDI while incorporating
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competitive inhibition and time-dependent inactivation in the liver and gut have
been extensively described (Rowland and Matin, 1973; Mayhew et al., 2000;
Wang et al., 2004; Obach et al., 2006, 2007; Fahmi et al., 2008) and are summa-
rized in the equation below (eq. 5).

AUCR 5
AUCi

AUC
5

1
1

11
½I�h
Ki

� 1

11
kinact�½I�h

KI1½I�hð Þ�kdeg,CYP3A, h

� � !
� fmðCYP3AÞ

 !
1 1� fmðCYP3AÞ
� �

� 1
1

11
½I�g
Ki

� 1

11
kinact�½I�g

KI1½I�gð Þ�kdeg,CYP3A, g

� � !
� 1� Fgð Þ

 !
1Fg

(5)

In the above equation, kdeg represents the hepatic (CYP3Ah, 0.00032
minute�1) and intestinal (CYP3Ag, 0.00050 minute�1) degradation rates of the
CYP3A enzyme (Obach et al., 2007; Rowland Yeo et al., 2011). The intestinal
kdeg is based on a half-life of 23.1 hours, which is the natural turnover rate of
enterocytes in vivo (Greenblatt et al., 2003). The hepatic kdeg is based on a half-
life of 36 hours, which was derived from a clinical DDI study conducted by
Fromm et al., 1996 (Obach et al., 2007). The fraction of the victim drug metabo-
lized by the CYP3A enzyme is represented as fm(CYP3A). In this analysis,
fm(CYP3A) for the victim drugs midazolam, buspirone, terfenadine, triazolam, and
simvastatin are 0.93, 0.94, 0.74, 0.92, and 0.92, respectively (Obach et al., 2006;
Yadav et al., 2018). The fraction of the victim drug escaping intestinal metabo-
lism is represented by Fg. For the victim drugs midazolam, buspirone, terfena-
dine, triazolam, and simvastatin, Fg are 0.57, 0.21, 0.40, 0.75, and 0.66,
respectively (Paine et al., 1996; Brown et al., 2005; Galetin et al., 2006, 2008,
2010; Gertz et al., 2008; Shou et al., 2008). The terms [I]h and [I]g represent
inhibiting concentrations of the test drug in the liver and intestine, respectively.
Unbound test drug concentrations (Cu) resulting in enzyme inhibition in the liver
were estimated as unbound steady state maximum hepatic inlet concentration
(Cmax,hepatic inlet,u) using the equation below (eq. 6) (Kanamitsu et al., 2000) or
unbound steady state maximum (Cmax,systemic,u) or average (Cavg,systemic,u)
systemic concentrations.

Cmax, hepatic inlet, u 5 fu, p � Cmax1
Fa � Fg � ka � Dose

BPR� Qh

� 	
(6)

In the equation above, ka is the oral absorption rate of the test drug (or 0.1
minute�1), Fa is the fraction of test drug absorbed after oral administration (assume
1), Fg is the fraction of test drug escaping intestinal metabolism (assume 1), fu,p is
the free fraction of the test drug in plasma, BPR is the blood-to-plasma ratio
(assume 1), and Qh is the liver blood flow [1617 ml/min (Yang et al., 2007a)].

Test drug concentrations resulting in enzyme inhibition in the intestine were
estimated as total or free inhibiting concentrations in the enterocyte (Ig) as
defined in eq. 7a by (Rostami-Hodjegan and Tucker, 2004), unbound steady state
maximum portal vein concentration (Cmax,portal,u, eq. 7b) or average portal vein
concentration (Cavg,portal,u, eq. 7c).

½I�g 5
Fa � ka � Dose

Qent
(7a)

Cmax, portal, u 5 fu, p � Cmax1
Fa � Fg � ka � Dose

BPR� Qpv

� 	
(7b)

Cavg, portal, u 5 fu, p � Cavg1
Fa � Fg � Dose
s� BPR� Qpv

� 	
(7c)

The parameters are the same as described above, with Qent representing the
intestinal blood flow [300 ml/min (Yang et al., 2007b)], Qpv represents the portal
vein blood flow (1213 ml/min), which is approximated as 75% of hepatic blood
flow, and s is the dosing interval for the inhibitor. Free enterocyte inhibiting con-
centrations are calculated as [I]g corrected for fu,plasma. Compound specific inputs
can be found in Supplemental Table 4.

Simcyp Modeling. Simcyp version 19 release 1 (19.0; Certara, Princeton,
NJ) was used to simulate the time courses of victim and perpetrator concentra-
tions in plasma. Simulations were conducted using a design of 10 trials with 10
subjects using the age range of 20–50 years and 1:1 male to female ratio. Simu-
lations were performed in a virtual population library of healthy volunteers

supplied by Simcyp (Sim-Healthy Volunteers). The hepatic and intestinal
CYP3A kdeg were 0.0193 hour�1 (t1/2 5 36 hours) and 0.03 hour�1 (t1/2 5 23.1
hours), respectively, consistent with those used in static modeling. The intestinal
concentrations were the enterocyte exit concentration (portal vein) with fu,gut 5
fu,plasma, whereas liver concentrations were the liver exit concentration. A sum-
mary of the trial designs for all simulations are listed in Table 1. In the DDI stud-
ies, the fold-increase in AUCR (e.g., AUCinfinity ratios in the single-dose studies
and AUCs ratios in the multiple-dose studies) was calculated from the ratios of
the simulated values in treatment groups relative to control groups. Geometric
means of pharmacokinetic parameters generated from Simcyp simulations were
compared with the clinically observed geometric mean parameters. For perpetra-
tor drugs clarithromycin, diltiazem, erythromycin, paroxetine, simvastatin, and
verapamil, compound files were qualified by Simcyp. Azithromycin Simcyp file
was developed by Certara using Simcyp V14 and published in Simcyp Global
Health Repository. To maintain consistency with the use of input parameters
generated internally (i.e., fu,p, KI, kinact, etc.), the steady-state volume of distribu-
tion (Vss) and oral clearance were adjusted to adequately recover the clinically
observed AUC and Cmax at the dose used in the DDI study. In predicting the
inhibitory effect of diltiazem administration, we have incorporated the inhibitory
effects of its primary metabolite (MA). Sim-desmethyldiltiazem (MA) was quali-
fied by Simcyp and used without adjusting Vss and CL. Input parameters of 23
perpetrators are summarized in Supplemental Tables 5–27. Briefly, physicochem-
ical properties (pKa, log P) are obtained from in silico software (www.acdlabs.
com; www.biobyte.com). Plasma binding (fu,p) was obtained from internal exper-
imental data (Supplemental Table 3). The apparent permeability values used
were either default values included as part of the qualified Simcyp files (https://
members.simcyp.com/account/libraryFiles) or calculated from in silico models
(Keefer et al., 2013) and extrapolated to effective permeability in human. ka, Vss,
and oral clearance were fitted manually to adequately recover the clinically
observed results at the doses used in the DDI studies (Supplemental Table 38).
These values were internally consistent with those used in static projections
(model 4).

For victim drugs, Sim-midazolam, SV-triazolam, and SV-simvastatin, Simcyp
library compound files were qualified by Simcyp and used without modification.
The terfenadine compound file was developed by Simcyp for QT prolongation
prediction and was adjusted to reasonably recover the clinical fm(CYP3A) and Fg.
The buspirone Simcyp model was developed based on physicochemical proper-
ties, plasma binding, distribution, and elimination obtained from literature
(Kivisto et al., 1997, 1999; Mahmood and Sahajwalla, 1999). The buspirone
model could reasonably recover both PK and fm(CYP3A). Using this model, the
predicted AUCR after coadministration of itraconazole are in reasonable agree-
ment with the observed values. Input parameters for the victim drugs are summa-
rized in Supplemental Tables 28-33.

Confusion Matrix Analyses. To determine the success of predicting DDI,
contingency tables were analyzed separately for HLM and HHEP results. Cutoff
values of AUCR were defined prospectively as $1.25-fold (bioequivalence) or
$2-fold. As an example, in the pairing of clinical and predicted AUCR $1.25-
fold, true positives (TP) were defined as drugs which resulted in an observed
clinical AUCR $1.25-fold and were predicted to have an AUCR $1.25-fold.
True negative (TN) drugs were those that resulted in an observed clinical AUCR
<1.25 and were predicted to have an AUCR <1.25-fold. False positive (FP)
drugs were defined as observed clinical AUCR <1.25-fold, but were predicted to
have an AUCR $1.25-fold, whereas false negative (FN) drugs were those where
an observed clinical AUCR was $1.25-fold, but the predicted AUCR was
<1.25-fold.

Additional assessments of probability to describe model success
included sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), positive predictive error (PPE), and negative pre-
dictive error (NPE). The sensitivity value describes the ability of the
model to correctly identify observed positive DDIs (eq. 8), whereas the
specificity value describes the ability of the model to correctly identify
observed negative DDIs (eq. 9). The PPV is the portion of studies that
were predicted to have an interaction in the clinic and a clinical interaction
was observed (eq. 10). Conversely, the NPV represents the portion of
studies that were predicted to not have an interaction in the clinic and a
clinical interaction was not observed (eq. 11). The PPE describes the por-
tion of studies that were predicted to have an interaction in the clinic, but
a clinical interaction was not observed (eq. 12). Lastly, NPE describes the
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TABLE 2

Total and free inhibition parameters determined in human liver microsomes

Reversible Inhibition Time-Dependent Inhibition

Drug Name Ki
a fu,mic Ki,u KI (S.E.) fu,mic (%CV) KI,u kinact (S.E.) kinact/KI,u

mM at 0.01 mg/mld mM mM at 0.3 mg/ml mM min21 ml·min21·mmol21

Azithromycin >50.0 0.982 >49.1 NR 0.650 (9) NR NR 0.025
Boceprevir 11.9 0.990 11.8 13.8 (1.7) 0.766 (12) 10.6 0.304 (0.010) 28.8
Carfilzomib 2.19 0.964 2.11 1.18 (0.22) 0.473b 0.558 0.107 (0.007) 192
Clarithromycin 43.9 0.982 43.1 55.9 (13.4) 0.647 (16) 36.2 0.0812 (0.0086) 2.25
Conivaptan 4.14 0.929 3.84 1.04 (0.16) 0.303 (4) 0.315 0.329 (0.013) 1040
Diltiazem 20.3 0.986 20.0 1.90 (0.28) 0.696 (9) 1.32 0.0109 (0.0004) 8.24
N-desmethyl Diltiazemc ND ND ND 0.961 (0.115) ND 0.961 0.00954 (0.00027) 9.94
Disulfiramc 1.18 ND 1.18 16.4 (5.2) ND 16.4 0.129 (0.012) 7.87
Eplerenone >50.0 0.991 >49.5 202 (58) 0.779 (10) 157 0.0223 (0.0029) 0.142
Erythromycin 32.0 0.979 31.3 23.3 (3.3) 0.613 (38) 14.3 0.0557 (0.0025) 3.90
Imatinib 28.9 0.974 28.2 16.4 (4.9) 0.560 (15) 9.18 0.0348 (0.0029) 3.79
Midostaurin 2.79 0.267 0.740 0.360 (0.120) 0.0118 (29) 0.00425 0.0207 (0.0015) 4870
Nelfinavir 1.46 0.561 0.816 1.44 (0.45) 0.0408 (21) 0.0588 0.510 (0.057) 8680
Nitrendipine 1.37 0.960 1.32 10.4 (3.1) 0.444 (22) 4.62 0.0266 (0.0020) 5.76
Panobinostat 4.99 0.971 4.84 30.3 (6.8) 0.530 (9) 16.1 0.0436 (0.0027) 2.71
Paroxetine 13.4 0.833 11.2 49.4 (22.0) 0.143 (17) 7.06 0.0277 (0.0084) 3.92
Propiverine 8.05 0.961 7.74 1.71 (0.23) 0.451 (25) 0.771 0.0298 (0.0012) 38.7
Propranolol >50.0 0.978 >48.9 No TDI 0.594 (3) No TDI No TDI No TDI
Simvastatin 0.146 0.651 0.095 NR 0.0585 (12) NR NR 0.195
Tabimorelin 8.30 0.973 8.08 1.98 (0.31) 0.547 (12) 1.08 0.0652 (0.0023) 60.2
Tadalafil 8.55 0.990 8.46 13.0 (1.7) 0.776 (4) 10.1 0.143 (0.004) 14.2
Telaprevir 11.6 0.992 11.5 0.644 (0.109) 0.806 (9) 0.519 0.108 (0.004) 208
Terfenadine 0.218 0.559 0.122 9.32 (5.85) 0.0405 (3) 0.377 0.0276 (0.0111) 73.2
Verapamil 12.9 0.979 12.6 2.80 (0.54) 0.610 (23) 1.71 0.0487 (0.0023) 28.5

%CV, percent coefficient of variation; ND, not determined (assume 1); NR, not reported (see data analysis section for the estimation of kinact/KI,u).
aCalculated as measured IC50/2.
bBased on in silico modeling.
cTotal values were reported since unbound fractions were not determined.
dfu,mic was calculated from fu,mic measured at 0.3 mg/ml (n 5 3 to 4) using equation from (Austin et al., 2002).

TABLE 3

Total and free inhibition parameters determined in human hepatocytes

Reversible Inhibition Time-Dependent Inhibition

Drug Name Ki
a Kp,uu

b Ki,u KI (S.E.) KI,u kinact (S.E.) kinact/KI,u

mM %CV mM mM mM min21 ml·min21·mmol21

Azithromycin >25.0 5.70 (5) >143 51.2 (17.3) 292 0.0327 (0.0032) 0.112
Boceprevir 10.8 0.190 (0.5) 2.04 25.9 (10.7) 4.92 0.0978 (0.0161) 19.9
Carfilzomib 1.71 0.0160 (33) 0.0300 7.76 (2.26) 0.126 0.0289 (0.0020) 229
Clarithromycin 13.8 0.600 (7) 8.25 7.45 (2.06) 4.47 0.0112 (0.0007) 2.51
Conivaptan 1.27 1.70 (8) 2.16 0.634 (0.124) 1.08 0.0182 (0.0010) 16.9
Diltiazem 13.0 0.253 (10) 3.28 35.4 (6.6) 8.96 0.0217 (0.0010) 2.42
N-desmethyl Diltiazemc ND ND ND 2.96 (1.12) 2.96 0.0127 (0.0011) 4.29
Disulfiram ND ND ND ND ND ND ND
Eplerenone >25.0 0.141 (13) >3.53 NR NR NR 0.0166
Erythromycin 16.9 0.328 (9) 5.06 27.1 (19.7) 8.13 0.0141 (0.0044) 1.73
Imatinib 22.5 1.00 (16) 22.5 29.4 (8.1) 29.4 0.0202 (0.0014) 0.687
Midostaurin >25.0 0.005 (43) >0.120 0.574 (0.165) 0.00276 0.00566 (0.00041) 2050
Nelfinavir 0.496 1.70 (12) 0.842 NR NR NR 6.24
Nitrendipine ND ND ND ND ND ND ND
Panobinostat >25.0 0.600 (11) >15.0 26.0 (7.2) 15.6 0.00446 (0.00038) 0.286
Paroxetine 14.3 0.600 (14) 8.55 NR NR NR 0.113
Propiverine 7.50 0.500 (15) 3.75 1.38 (0.62) 0.690 0.0196 (0.0040) 28.4
Propranolol ND ND ND ND ND ND ND
Simvastatin ND ND ND ND ND ND ND
Tabimorelin 2.85 0.200 (18) 0.569 7.57 (2.62) 1.51 0.0148 (0.0013) 9.78
Tadalafil 12.9 0.600 (5) 7.71 4.26 (1.44) 2.56 0.028 (0.002) 11.0
Telaprevir 0.273 0.450 (17) 0.123 2.24 (0.95) 1.01 0.0112 (0.0011) 11.1
Terfenadine 2.17 1.40 3.04 NR NR NR 0.426
Verapamil 13.4 0.310 (20) 4.14 0.661 (0.143) 0.205 0.0172 (0.0010) 83.9

%CV, percent coefficient of variation; ND, not determined since no TDI was detected in a single concentration screen at 30 mM; NR, not reported see data analysis section for the estima-
tion of kinact/KI,u.
aCalculated as measured IC50/2.
bCalculated from Kp (n53) and fu,liver reported in supplemental tables.
cTotal value was reported since Kp,uu was not determined.
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portion of studies that were predicted to not have an interaction in the
clinic, but a clinical interaction was observed (eq. 13).

Sensitivity 5
TP

TP1FN
� 100% (8)

Specificity 5
TN

TN1FP
� 100% (9)

PPV 5
TP

TP1FP
� 100% (10)

NPV 5
TN

TN1FN
� 100% (11)

PPE 5 ð1� PPVÞ � 100% (12)

NPE 5 ð1� NPVÞ � 100% (13)

Accuracy of Predictions. Accuracy of the various prediction models was
assessed by the average fold error or bias (eq. 14). Precision of the predictions
were evaluated using geometric mean absolute fold error (GMFE, eq. 15) and
root mean square fold error (RMSFE, eq. 16).

AFE 5 10
S log

predicted DDI
actual DDI
N (14)

GMFE 5 10
S log

predicted DDI
actual DDIj j
N (15)

RMSFE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log predicted DDI

actual DDI

� �2
N

vuut
(16)

where N is the total number of predictions.

Results

CYP3A TDI in Human Liver Microsomes and Hepatocytes.
Among the 24 compounds evaluated (23 drugs and one metabolite), 23
and 20 demonstrated measurable inactivation kinetic parameters in
HLM and HHEP, respectively. Values for KI ranged from 0.360 to 202
mM in HLM and 0.574 to 51.2 mM in HHEP. These were corrected for
unbound fraction prior to utilizing them in projection of DDI (see
below). Since hepatocytes are intact cells that possess a membrane bar-
rier, availability of the inhibitor to the P450 enzyme to cause inactiva-
tion may be limited, and this barrier is not present in HLM. By
estimating the intracellular free drug concentration, inhibitor availability
to the active site can be determined using Kp,uu. Therefore, application
of Kp,uu to HHEP KI was deemed to be a reasonable estimate of HHEP
KI,u. For Kinact, values ranged from 0.00954 to 0.329 minute�1 in HLM
and 0.00446 to 0.0978 minute�1 in HHEP. Values are listed in Tables 2
and 3, and the percent of control activity versus incubation time and
kobs versus [I] plots for each drug are shown in the Supplemental
Figures. On average, (i.e., average fold error) the KI,u, kinact, and kinact/
KI,u values in HLM were 1.2-, 3.5-, and 3.2-fold greater than in HHEP
(Fig. 1).
Projection of DDI from CYP3A TDI Data in Liver Micro-

somes and Hepatocytes: Static Method. The equations described
above were used to make projections of DDI, based on AUCR.
Although the in vitro kinetic parameters are measured experimentally,
several input values needed for these projections cannot be measured
experimentally and must be estimated (e.g., Fa, ka, etc.). Furthermore,

TABLE 4

Numerical accuracy of DDI predictions determined from human liver microsomes and human hepatocytes using mechanistic static models

Model 1 Model 2 Model 3 Model 4

Relevant [I]g entrance entrance exit exit
Relevant [I]h entrance entrance exit exit

Fixed Input Parameters

Fa 1
CYP3A kdeg,g 0.00050 min�1

CYP3A kdeg,h 0.00032 min�1

Qg 300 ml/min 300 ml/min 1213 ml/min 1213 ml/min
Qh 1617 ml/min 1617 ml/min NA NA

Varied Input Parameters

ka 0.1 min�1 custom custom custom
[I]g Total Enterocytea Free Enterocyteb Cmax,portal,u

c Cavg,portal,u
d

[I]h Cmax,hepatic inlet,u
e Cmax,hepatic inlet,u

e Cmax,systemic,u Cavg,systemic,u

fu,gut 1 fu,plasma fu,plasma fu,plasma

Performance Human Liver Microsomes

Bias (CI90%) 6.3 (4.8–8.1) 5.0 (3.8–6.5) 2.7 (2.2–3.4) 1.8 (1.5–2.3)
GMFE (CI90%) 6.3 (4.8–8.1) 5.1 (3.9–6.6) 2.8 (2.3–3.5) 2.0 (1.6–2.4)
RMSFE 7.38 6.09 3.37 2.42
% Within 2-fold 12 12 36 56
% Within 3-fold 16 28 48 80
% Outside 10-fold 24 16 4 0

Performance Human Hepatocytes

Bias (CI90%) 3.8 (2.9–4.9) 2.7 (2.0–3.4) 1.6 (1.2–2.1) 1.1 (0.88–1.4)
GMFE (CI90%) 3.8 (3.0–4.9) 2.7 (2.1–3.5) 2.0 (1.6–2.5) 1.7 (1.4–2.0)
RMSFE 4.70 3.49 2.52 2.04
% Within 2-fold 24 44 56 68
% Within 3-fold 36 60 76 84
% Outside 10-fold 12 4 0 0

CI90%, 90% confidence interval; Cmax,systemic,u, unbound maximum systemic concentration; fu,gut, intestinal free fraction; kdeg,g, intestinal degradation rate; kdeg,h, hepatic degradation rate;
NA, not applicable; Qg, intestinal blood flow; Qh, liver blood flow.
aAs calculated per eq. 7a.
bAs calculated per eq. 7a corrected for free fraction in plasma.
cAs calculated per eq. 7b.
dAs calculated per eq. 7c.
eAs calculated per eq. 6.
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the correct in vivo concentrations of the inactivator in the liver and
intestine are needed, and whether the best values to use are represented
by maximum or average organ inlet or egress values is unknown. Based

on the input parameters mentioned above, over 50 combinations of
these values could be evaluated. These methods were narrowed down
to three (referred to as Methods 2–4), selected because they represented
internally consistent and physiologically meaningful combinations. That
is, we did not further pursue random combinations that would make no
sense or be illogically contradictory. These were also compared with
the input parameters currently recommended in the United States Food
and Drug Administration regulatory document on drug-drug interactions
[referred to as Method 1; (FDA, 2020)].
When comparing the approaches, the input parameters of CYP3A

degradation rates and organ flow rates were kept constant, as these are
reasonably well established, and it was not an objective to test the valid-
ity of these values. Also, for many of the drugs used in the evaluation,
their overall oral absorption is not known, and thus, a value of unity
was used. This could be an overestimate for some of the drugs. The
greatest source of variation in prediction methods lies in the selection of
the most relevant in vivo concentrations of the perpetrator drug, in both
liver and intestine. In these approaches, unbound concentrations were
used, and the concentrations entering the organ (liver and intestine)
were compared with concentrations exiting the organ. The concentra-
tions entering the liver were considered as the hepatic inlet estimates
(Cmax,hepatic inlet,u), whereas the concentrations entering the intestine were
estimated using the absorption rate constant and oral doses (eq. 7a). The
concentrations exiting the liver and intestine were considered as the sys-
temic concentrations (Cmax,systemic,u or Cavg,systemic,u) and estimated por-
tal vein concentrations (Cmax,portal,u, eq. 7b or Cavg,portal,u, eq. 7c),
respectively. Calculated concentrations for [I]g and [I]h are listed in
Supplemental Table 34.
A summary of performance characteristics of DDI prediction from

TDI data are presented in Table 4. When using TDI data gathered in
HLM in making estimates of DDI, the best input values for concentra-
tions for the liver were the average organ exit values (i.e., Cavg,u), and
the best input values for concentrations for the intestine were also the
exit values described by the estimates of portal vein concentrations
(Models 3 and 4). Model performance was somewhat better when
employing estimated Cavg,u values than unbound maximum concentra-
tion values. Model 4 had a GMFE of 2.0, indicating that, on average,
projections of DDI from in vitro data were within about 2-fold of the
actual values, in this case the 2-fold error favored an overprediction of
DDI (Fig. 2A). Using organ entrance values for perpetrator concentra-
tions (Models 1 and 2) yielded poorer performance and marked over-
projections of DDI. The consideration of using the estimated free
concentration in the intestine (Models 2–4) is an important one.
Model 1, as recommended in regulatory guidance, uses a very rapid
rate of absorption (proximate to the rate of gastric emptying) and
essentially states that the concentration of the perpetrator drug in
the enterocyte is equal to the concentration of the total dose dis-
solved in the luminal fluids. This yields poor performance and con-
sistent over-projection of DDI from TDI data. Consideration of the
free concentration in the enterocytes, along with more realistic
absorption rates (Models 2–4), yields a considerable improvement
in DDI projection over Model 1. Individual estimates are listed in
Supplemental Table 35.
A similar trend among the use of various input values for in vivo

perpetrator drug concentrations was observed when using TDI data
from HHEP (Table 4). Again, Models 3 and 4, which use unbound
exit concentrations for liver and intestine, yielded the most reliable
projections of DDI (Fig. 2B, Model 4). Furthermore, use of HHEP
TDI data offered nominal performance improvements in projections
relative to HLM TDI data, with Model 4 yielding a GMFE of 1.7,
as compared with 2.0 for HLM data. Overall, projections of DDI

Fig. 1. Comparison of TDI parameters obtained in HLM versus HHEP). (A) KI,u;
(B) kinact; and (C) kinact/KI,u. Solid black lines represent unity, dotted and dashed
lines represent 2-fold and 3-fold deviation from unity, and solid red line represents
bias. Azithromycin, nelfinavir, terfenadine, paroxetine, and eplerenone are not shown
in (A) and (B) because individual KI and kinact were not able to be determined.
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were still higher than those observed in vivo, especially if organ
entrance values for perpetrator concentrations were employed
(Models 1 and 2). Individual estimates are listed in Supplemental
Table 36.
Evaluation of AUCR projections relative to the extent of

observed clinical AUCR revealed no clear relationship with over-
predictions above and below the 2-fold criteria (Fig. 3). Of particu-
lar interest is significant overpredictions with observed AUCR
below 2-fold for several drugs (e.g., tadalafil, midostaurin) irrespec-
tive of whether the in vitro data generated in HLM or HHEP. Fur-
ther mechanistic evaluation may be required to clarify contributing
factors. Drugs with underprediction of DDI using data generated in
HHEP were diltiazem (Simcyp only), nelfinavir, and conivaptan
(static and dynamic modeling).
In addition to evaluating these approaches for numerical accu-

racy of projection of DDI, it is also useful to evaluate them using
categorical criteria and cutoff values for what is defined as a DDI
and what is not (i.e., a confusion matrix analysis). This analysis
was conducted using two criteria for DDI: 1.25-fold, as defined by
bioequivalence boundaries, and 2-fold. The latter is offered as a
reasonable value for DDI that may actually be meaningful for
clinical outcome. This will always be dependent on the therapeu-
tic window for the affected drug, as some drugs are very safe, and
marked increases in exposure can still be well tolerated, but others
could be dosed at levels such that smaller increases in exposure
can yield meaningful side effects. Nevertheless, very few drugs
go from safe to toxic with a mere 2-fold increase in exposure, and
thus, a 2-fold DDI cutoff criteria was deemed a useful one by
which to evaluate these DDI projection methods.

TDI experiments performed in HLM offer very high sensitivity, how-
ever, specificity can be low, depending on the model employed. When
using the data in this binary fashion, the ten drugs (Fig. 4) that cause a
greater than 2-fold DDI are readily identified irrespective of the model
used yielding 100% sensitivity (Table 5). However, this comes at a cost
of a high rate of false positives especially when using Models 1 and 2
(organ entrance concentrations as input for in vivo [I]), as 13 of 15
drugs that cause DDI below 2-fold are actually identified as causing
greater than 2-fold DDI. The PPE, i.e., the portion of DDI studies that
are identified as needing to be conducted but actually are negative and
would not need to be conducted, is high at 57%. This attribute improves
to 33%–50% if Models 3 or 4 are employed in that a greater number of
the negative drugs are properly identified as such and this does not
come at the expense of any false negative drugs: all positive drugs are
identified. Overall, the performance of the models using HLM data are
similar when using either 1.25- or 2-fold as the defining cutoff for DDI.
When using TDI data generated in HHEP, the PPE improves to a minor
extent, decreasing to as low as 25%. However, this comes at a cost of
1–3 instances of false negative outcomes. Overall, the combination that
yields the lowest PPE while not giving any false negative is the use of
TDI data from HLM entered into Model 4, which uses the average
organ exit concentrations for in vivo [I]. This observation is independent
of the DDI cutoff applied (i.e., 1.25- or 2-fold).
Projection of DDI from CYP3A TDI Data in Liver Micro-

somes and Hepatocytes: Dynamic PBPK Method. These in vitro
data were also used as input values for projecting DDI using Simcyp
(individual estimates are listed in Supplement Table 37). In this case,
various input parameters such as in vivo [I] values, absorption extent
and rate values, and enzyme degradation rates are embedded in the

Fig. 2. Predicted versus observed AUC ratios from mechanistic static Model 4 (A and B) and Simcyp modeling (C and D). (A and C) are results using human liver
microsome–generated inactivation parameters, and (B and D) are results human hepatocyte–generated inactivation parameters. Solid black lines represent unity, dotted
lines represent 2-fold and 3-fold deviation from unity, and red solid lines represent the bias.
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algorithms. The output DDI projections were evaluated as above for
both numerical accuracy of DDI projections (Table 6) as well as cate-
gorical assignment of the potential for DDI using 1.25- and 2-fold
boundaries (Table 7). Use of Simcyp yielded overall accuracy for pro-
jections of DDI from in vitro data with GMFE of 1.7 and 1.6 if data
were from HLM or HHEP, respectively (Fig. 2, C and D). These perfor-
mance characteristics are slightly better than the best of the static mod-
els (Model 4). When evaluated in a confusion matrix, Simcyp modeling
performed very well with TDI data from HLM, with no instances of
false negatives (i.e., 100% sensitivity) and with high specificity (PPE of
only 24% and 23% when using 1.25-fold and 2-fold cutoff values for
defining a DDI (Table 7). However, with TDI data obtained from
HHEP, the performance of Simcyp suffered slightly with occurrences
of false negatives that decreased sensitivity to about 70%–85% depend-
ing on cutoff criteria (Fig. 5).

Discussion

The projection of clinical DDI from in vitro TDI data is challenging.
Considerable progress has been made, yet it is still commonplace to
project DDI from in vitro data and then conduct a clinical study based
on that projection, only to observe no DDI. In drug development, such
an occurrence (i.e., a false positive from the in vitro data), while demon-
strating that it will be acceptable to coadminister the two agents based
on the clinical observation, expends effort on a clinical DDI study that
really did not need to be conducted. Efforts and resources would be bet-
ter expended on other clinical studies. Our exploration of different
model input values, especially the application of projected organ egress
concentrations instead of entry concentrations, improves the overall
fidelity of predictions of DDI while still avoiding the occurrence of false
negative outputs. Use of PBPK modeling (Simcyp) yielded excellent
performance with data from HLM, with no false negative outputs. It is

false negative outputs (i.e., projection of no DDI from in vitro data but
actual DDI in the clinic) which must be avoided as this would result in
a deleterious impact on patient safety.
It should be noted that in vitro TDI assays, using HLM or HHEP, are

highly sensitive. If one considers the lower limit of statistically detect-
able kobs values in vitro [0.002 minute�1 and 0.0015 minute�1 for
HLM and HHEP, respectively; (Eng et al., 2021)] as compared with the
estimate for the natural turnover rate for CYP3A in vivo (0.00032
minute�1), then any drug demonstrating measurable TDI would be
expected to cause at least a 12-fold decline in CYP3A activity at the
inhibitor concentration that yielded the lower limit value of kobs. That
is, the rate of inactivation would exceed the natural rate of enzyme
resynthesis by 12-fold. It should also be noted that varying values of
kdeg,h for CYP3A4 have been reported in the literature (Yang et al.,
2008), and that the accuracy of projections of DDI from in vitro data
will be dependent on the kdeg,h value used. A value of 0.00032
minute�1 was selected for our static models to be consistent with the
value embedded in the Simcyp algorithm.
The present efforts focused on three main objectives: 1) a com-

parison of in vitro TDI data generated in HLM and HHEP; 2)
evaluation of different input values for estimates of in vivo con-
centrations of the inhibitor in static models for DDI prediction
and identification of the best values; and 3) evaluation of the
dynamic PBPK model Simcyp for prediction of DDI from TDI
data. The in vitro dataset generated for these objectives represents
the largest one reported using a fixed source of in vitro reagents
and consistent methods run in one laboratory, paired with clinical
DDI data gathered from the literature. Previously reported efforts
had many fewer examples included (Mayhew et al., 2000; Obach
et al., 2007; Mao et al., 2011; Kenny et al., 2012). CYP3A was
the enzyme of focus, since the greatest number of TDI and DDI is
known for this enzyme. Other P450 enzymes such as CYP2D6 or

Fig. 3. Model performance versus observed AUCR from mechanistic static Model 4 (A and B) and Simcyp modeling (C and D). (A and C) are results using human
liver microsome–generated inactivation parameters, and (B and D) are results using human hepatocyte–generated inactivation parameters. Shaded area represents 0.5-
to 2-fold criteria. Azi, azithromycin; Boc, boceprevir; Car, carfilzomib; Cla, clarithromycin; Con, conivaptan; Dil, diltiazem; Dis, disulfiram; Epl, eplerenone; Ery,
erythromycin; Ima, imatinib; Mid, midostaurin; Nel IV, nelfinavir (IV midazolam); Nit, nitrendipine; Pan, panobinostat; Par, paroxetine; Ppv, propiverine; Pro, pro-
pranolol; Sim, simvastatin; Tab, tabimorelin; Tad, tadalafil; Tel, telaprevir; Tel IV, telaprevir (IV midazolam); Ter, terfenadine; Ver, verapamil.
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CYP1A2 have few examples of drugs that are TDI with corre-
sponding clinical data for comparison and as such do not offer a
large enough set of drugs from which conclusions could be drawn.
It is proposed that the conclusions generated for CYP3A could be
applicable to other enzymes. Also, compared with other P450s,
the magnitude of CYP3A-based DDIs can be high for orally
administered drugs because of the potential for inhibition of this
enzyme not only in the liver but also in the small intestine during
the absorption of the drugs after oral administration.
The data demonstrated that DDI are predictable from in vitro

TDI data gathered in either in vitro system. Inactivation kinetic val-
ues in HLM were generally greater than in HHEP. In both cases, it
was important to correct Ki and KI values generated from nominal
concentrations of the inhibitor added to the incubations by binding
and partition factors. Inhibitor concentrations available to inactivate
CYP3A may actually be lower than those added to the assay due to
nonspecific binding (HLM and HHEP) and unequal concentrations
of unbound drug inside and outside the cell (i.e., Kp,uu in hepato-
cyte incubations). Most important is the selection of the most
appropriate value for in vivo concentration of the inhibitor drug.
Previous recommendations have advocated that the total concentra-
tion of drug in the lumen should be used for projection of DDI

occurring in the intestine and unbound maximum concentrations
estimated for the portal vein during absorption be used for projec-
tion of DDI occurring in the liver (Ito et al., 1998; Rostami-Hodje-
gan and Tucker, 2004; FDA, 2020). These are represented in
Model 1, and lead to such marked over-projection of DDI (mean
GMFE of 4–6, and high false positive rates) that the value of con-
ducting in vitro TDI assays is essentially negated. The assay would
be futile, as just about every drug tested will suggest the likelihood
of DDI and the need for a clinical DDI study. However, moving to
potentially more realistic values for in vivo [I] in intestine (entero-
cytes) and in liver greatly improves the accuracy of DDI projection.
In Models 3 and 4, estimated unbound organ exit concentrations
are used (i.e., free portal concentrations for intestine and free sys-
temic concentrations for liver), and these may better reflect the con-
centrations of inhibitor available to affect the enzyme in these
tissues. Use of Cavg,u values were shown to be best. Mean GMFE
values of 2.0 and 1.7 were calculated when using HLM and HHEP
data, respectively (Table 4). Simcyp modeling, in which the rele-
vant in vivo concentration values are embedded in the software,
yielded mean GMFE values of 1.7 and 1.6 for HLM and HHEP,
respectively (Table 6). Furthermore, a high degree of correlation
(r2 > 0.9) was observed when predicted AUCRs from HLM and

Fig. 4. Classification of predicted (Pred) AUCR versus observed (Obs) AUCR using 1.25- and 2-fold cutoff criteria in mechanistic static models 1–4. Values in each
section of the bar graphs represent the number of drugs that were predicted to be TP, TN, FP, or FN using liver microsome (A) or hepatocyte- (B) generated
parameters.

TABLE 5

Categorical accuracy of DDI predictions using mechanistic static models

DDI Cutoff Matrix Model N Sensitivity Specificity PPV NPV PPE NPE

% % % % % %

Clinical $ 1.25-fold and prediction $ 1.25-fold Human liver microsomes 1 25 100 8 54 100 46 0
2 25 100 17 57 100 43 0
3 25 100 25 59 100 41 0
4 25 100 67 76 100 24 0

Human hepatocytes 1 25 100 33 62 100 38 0
2 25 100 33 62 100 38 0
3 25 100 58 72 100 28 0
4 25 92 67 75 89 25 11

Clinical $ 2-fold and prediction $ 2-fold Human liver microsomes 1 25 100 13 43 100 57 0
2 25 100 13 43 100 57 0
3 25 100 33 50 100 50 0
4 25 100 67 67 100 33 0

Human hepatocytes 1 25 100 27 48 100 52 0
2 25 100 40 53 100 47 0
3 25 90 67 64 91 36 9
4 25 70 80 70 80 30 20
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HHEP using Model 4 and Simcyp were compared (Fig. 6). These
performance characteristics for both static and Simcyp modeling
demonstrate that DDI can be projected from in vitro TDI data pro-
vided that appropriate input values are entered. Additionally, the
use of HHEP generated TDI values with Simcyp modeling would
provide an estimated AUCR with the highest degree of numerical
accuracy compared with clinical observations.
A second manner in which in vitro TDI data may be used is in

a binary decision making fashion. Thus, instead of seeking
numerical accuracy in projecting DDI, the data are used to deter-
mine whether a clinical DDI study is needed or not. This depends
on the cutoff used to define a DDI, and in this analysis, the data
were evaluated using two cutoff criteria: 2-fold representing a
minimum of what may cause a clinically meaningful DDI for
many drugs and 1.25-fold representing a conservative bioequiva-
lence boundary. Utilizing the data in this manner strives for mini-
mizing false positives (i.e., running a clinical DDI study which
shows no DDI) while not allowing for any false negatives (i.e.,
not running a clinical DDI study when one was actually needed).
As with the aforementioned numerical accuracy findings, evaluat-
ing the data in this manner yielded similar conclusions with
regard to the most appropriate input values used for in vivo [I]. If
using organ entry concentrations, over-projection of the fre-
quency of actual DDI was high, rendering the use of in vitro TDI
essentially uninformative for such decision making (Table 5).
This observation was similar irrespective of the cutoff values
used (1.25- or 2-fold). However, when organ exit concentrations
were employed, the sensitivity remained high, and the selectivity
increased (fewer false positives). Method 4 with HLM data also
yielded a mean GMFE of 2-fold. Thus, the overall conclusion for
static models is that the use of TDI data from HLM along with
Cavg,u values for [I] (Model 4) is the recommendation for an opti-
mal strategy when employing in vitro data for clinical study plan-
ning for CYP3A based DDI caused by TDI.
Similar observations were made from the data entered into Sim-

cyp modeling (Tables 6 and 7). Simcyp modeling offers a more
sophisticated approach than simple equations that assume a single
static in vivo concentration of inhibitor and substrate when estimat-
ing DDI. In Simcyp, concentrations are correctly assumed to be
changing over time, and this is accounted for when projecting the

extent of CYP3A inactivation. Model performance characteristics
for Simcyp were even better than Model 4. When performance was
evaluated using the categorical criteria, Simcyp yielded no false
negative outcomes for HLM TDI data, however, when employing
TDI data from HHEP, there were instances of false negative out-
comes (Table 7). Thus, the overall conclusion for Simcyp modeling
for CYP3A DDI caused by TDI is that the best in vitro input data
are from HLM.
Reasons behind why there are differences between TDI parameters

generated in HHEP versus HLM, particularly kinact, have not been deter-
mined. Corrections for fu,mic and Kp,uu were made before making com-
parisons, removing these as possible factors. Various reasons can be
speculated, such as the presence of conjugating enzyme activities pre-
sent in HHEP but absent in HLM that could remove inactivating metab-
olites, or the existence of some unknown enzyme protection mechanism
in HHEP that is absent in HLM. The catalytic cycle of P450 activity is
complex and possesses steps wherein the process can be uncoupled,
resulting in generation of reactive oxygen species without catalyzing
metabolism of the substrate, and alteration of this cycle in one system
versus the other could yield differences in enzyme inactivation. Further-
more, it has been proposed that there are multiple phases of inactivation
in TDI experiments and that a more sophisticated method of deriving
in vitro values from these experiments is needed as compared with the
manner in which the present data were processed (Yadav et al., 2018,
2020). Preliminary data has been generated that shows that not only are
kinact values different in the two systems, but that partition coefficients
also differ (data on file). The partition coefficient is a measure of the
ratio of the molecules of substrate consumed per molecule of enzyme
inactivated and is an inherent biochemical property of an enzyme-inacti-
vator pair. Thus, there appears to be a difference in the manner in which
CYP3A behaves in the intact hepatocyte system versus microsome
incubations. Further efforts to understand these differences at a funda-
mental biochemical level are underway and will be reported in due
course. The drugs assessed here have not been demonstrated to be clini-
cal inducers. However, this does not preclude them from possessing
in vitro induction potential. Although the current analysis excludes
in vitro induction parameters, work is ongoing to determine how in vitro
induction may play a role in aligning compounds for which over predic-
tions were observed.
Lastly, from the simplest basic and static models to more sophisti-

cated and complex PBPK models, there is always a level of uncertainty
that arises from the assumptions required for various in vivo input
parameters (e.g., kdeg, fm, Fg, [I]in vivo, Kp,uu in vivo) and conceptual sim-
plifications needed for modeling. Regarding the latter, it is necessary to
simplify that the target organs, liver and intestine, are homogeneous
compartments as opposed to the complex multicompartment tissues that
they truly are. Furthermore, subcellular distribution of the inactivators
and substrates is likely heterogeneous, which cannot be currently mea-
sured. Absorption is a more complex kinetic process than what has
been addressed in the present treatment, and further work is planned to
evaluate the impact of more complex and multiphasic absorption

TABLE 6

Numerical accuracy of DDI predictions using Simcyp

Performance Human Liver Microsomes Human Hepatocytes

Bias (CI90%) 1.6 (1.3–1.9) 1.1 (0.85–1.3)
GMFE (CI90%) 1.7 (1.5–2.0) 1.6 (1.4–1.8)
RMSFE 2.02 1.88
% Within 2-fold 64 68
% Within 3-fold 88 88
% Outside 10-fold 0 0

TABLE 7

Categorical accuracy of DDI predictions using Simcyp

DDI Cutoff Matrix N Sensitivity Specificity PPV NPV PPE NPE
% % % % % %

Clinical $ 1.25-fold and prediction $ 1.25-fold Human liver microsomes 25 100 67 76 100 24 0
Human hepatocytes 25 85 83 85 83 15 17

Clinical $ 2-fold and prediction $ 2-fold Human liver microsomes 25 100 80 77 100 23 0
Human hepatocytes 25 70 80 70 80 30 20
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models driving in vivo input concentrations (e.g., the Advanced Disso-
lution, Absorption, Metabolism (ADAM) model in Simcyp). Finally, it
must be appreciated that there is uncertainty and variability in important
input parameters like kdeg for CYP3A4 and Fg for midazolam and other
substrates, among others, as well as the potential impact of the role for
CYP3A5 in the metabolism of the substrates in vivo. As the science
and knowledge around these factors continue to develop, re-evaluation
and refinement of DDI prediction methods will be necessary. With the
present state of knowledge, the approaches described here offer the best
performance for predicting DDI for CYP3A time-dependent inactivators
that can be currently achieved.
In conclusion, it has been demonstrated that TDI data for

CYP3A generated in either HLM or HHEP can be used effec-
tively to predict the magnitude of DDI and to make decisions
regarding the need for clinical DDI studies. Data from HLM
appears to perform better overall regarding not missing any DDI,
whether using static or dynamic modeling, however, use of these
data tended to yield more over-projection of DDI as compared
with TDI data generated using HHEP. Key to the success in this
endeavor is the selection of the most appropriate value for the
in vivo concentration of the inactivator at the most important
sites of action, the liver and intestine. Projected organ exit con-
centrations were best, and the use of maximum or average values
can work depending on the reagent used to generate the in vitro
TDI data. PBPK modeling using the Simcyp module, wherein

concentrations of the substrate and inhibitor are changing over
time, performed well in predicting DDI.
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