Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

The Long Noncoding RNA Hepatocyte Nuclear Factor 4α Antisense RNA 1 Negatively Regulates Cytochrome P450 Enzymes in Huh7 Cells via Histone Modifications

Pei Wang, Shitong Chen, Yiting Wang, Xiaofei Wang, Liang Yan, Kun Yang, Xiao-bo Zhong, Shengna Han and Lirong Zhang
Drug Metabolism and Disposition May 2021, 49 (5) 361-368; DOI: https://doi.org/10.1124/dmd.120.000316
Pei Wang
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shitong Chen
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yiting Wang
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaofei Wang
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liang Yan
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kun Yang
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao-bo Zhong
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xiao-bo Zhong
Shengna Han
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lirong Zhang
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., S.C., Y.W., X.W., K.Y., S.H., L.Z.); Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-b.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The maintenance of homeostasis of cytochromes P450 enzymes (P450s) under both physiologic and xenobiotic exposure conditions is ensured by the action of positive and negative regulators. In the current study, the hepatocyte nuclear factor 4α (HNF4A) antisense RNA 1 (HNF4A-AS1), an antisense long noncoding RNA of HNF4A, was found to be a negative regulator of the basal and rifampicin (RIF)-induced expression of nuclear receptors and downstream P450s. In Huh7 cells, knockdown of HNF4A-AS1 resulted in elevated expression of HNF4A, pregnane X receptor (PXR), and P450s (including CYP3A4) under both basal and RIF-induced conditions. Conversely, overexpression of HNF4A-AS1 led to decreased basal expression of constitutive androstane receptor, aryl hydrocarbon receptor, PXR, and all studied P450s. Of note, significantly diminished induction levels of PXR and CYP1A2, 2C8, 2C19, and 3A4 by RIF were also observed in HNF4A-AS1 plasmid-transfected Huh7 cells. Moreover, the negative feedback of HNF4A on HNF4A-AS1–mediated gene expression was validated using a loss-of-function experiment in this study. Strikingly, our data showed that increased enrichment levels of histone 3 lysine 4 trimethylation and HNF4A in the CYP3A4 promoter contribute to the elevated CYP3A4 expression after HNF4A-AS1 knockdown. Overall, the current study reveals that histone modifications contribute to the negative regulation of nuclear receptors and P450s by HNF4A-AS1 in basal and drug-induced levels.

SIGNIFICANCE STATEMENT Utilizing loss-of-function and gain-of-function experiments, the current study systematically investigated the negative regulation of HNF4A-AS1 on the expression of nuclear receptors (including HNF4A, constitutive androstane receptor, aryl hydrocarbon receptor, and pregnane X receptor) and P450s (including CYP1A2, 2E1, 2B6, 2D6, 2C8, 2C9, 2C19, and 3A4) in both basal and rifampicin-induced levels in Huh7 cells. Notably, this study is the first to reveal the contribution of histone modification to the HNF4A-AS1–mediated expression of CYP3A4 in Huh7 cells.

Footnotes

    • Received November 16, 2020.
    • Accepted February 2, 2021.
  • ↵1 P.W. and S.C. contributed equally to this work.

  • This work was supported by the National Natural Science Foundation of China [Grants 81773815, 82073931, and U1604163] and the National Key Research and Development Project [Grant 2018YFA0107303].

  • The authors declare that they have no conflicts of interest.

  • https://doi.org/10.1124/dmd.120.000316.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2021 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 49 (5)
Drug Metabolism and Disposition
Vol. 49, Issue 5
1 May 2021
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Long Noncoding RNA Hepatocyte Nuclear Factor 4α Antisense RNA 1 Negatively Regulates Cytochrome P450 Enzymes in Huh7 Cells via Histone Modifications
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

HNF4A-AS1 Regulates P450s via Histone Modifications

Pei Wang, Shitong Chen, Yiting Wang, Xiaofei Wang, Liang Yan, Kun Yang, Xiao-bo Zhong, Shengna Han and Lirong Zhang
Drug Metabolism and Disposition May 1, 2021, 49 (5) 361-368; DOI: https://doi.org/10.1124/dmd.120.000316

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

HNF4A-AS1 Regulates P450s via Histone Modifications

Pei Wang, Shitong Chen, Yiting Wang, Xiaofei Wang, Liang Yan, Kun Yang, Xiao-bo Zhong, Shengna Han and Lirong Zhang
Drug Metabolism and Disposition May 1, 2021, 49 (5) 361-368; DOI: https://doi.org/10.1124/dmd.120.000316
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ozanimod Human Metabolism and Disposition
  • Clearance Pathways: Fevipiprant with Probenecid Perpetrator
  • High-Throughput Characterization of SLCO1B1 VUS
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics