Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Comparative Proteomics Analysis of the Postmitochondrial Supernatant Fraction of Human Lens-Free Whole Eye and Liver

Ankit Balhara, Abdul Basit, Upendra A. Argikar, Jennifer L. Dumouchel, Saranjit Singh and Bhagwat Prasad
Drug Metabolism and Disposition July 2021, 49 (7) 592-600; DOI: https://doi.org/10.1124/dmd.120.000297
Ankit Balhara
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Abdul Basit
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Upendra A. Argikar
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer L. Dumouchel
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Saranjit Singh
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bhagwat Prasad
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India (An.B., S.S.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (Ab.B., B.P.); Biotransformation Group, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (U.A.A.); and Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island (J.L.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The increasing incidence of ocular diseases has accelerated research into therapeutic interventions needed for the eye. Ocular enzymes play important roles in the metabolism of drugs and endobiotics. Various ocular drugs are designed as prodrugs that are activated by ocular enzymes. Moreover, ocular enzymes have been implicated in the bioactivation of drugs to their toxic metabolites. The key purpose of this study was to compare global proteomes of the pooled samples of the eye (n = 11) and the liver (n = 50) with a detailed analysis of the abundance of enzymes involved in the metabolism of xenobiotics and endobiotics. We used the postmitochondrial supernatant fraction (S9 fraction) of the lens-free whole eye homogenate as a model to allow accurate comparison with the liver S9 fraction. A total of 269 proteins (including 23 metabolic enzymes) were detected exclusively in the pooled eye S9 against 648 proteins in the liver S9 (including 174 metabolic enzymes), whereas 424 proteins (including 94 metabolic enzymes) were detected in both the organs. The major hepatic cytochrome P450 and UDP-glucuronosyltransferases enzymes were not detected, but aldehyde dehydrogenases and glutathione transferases were the predominant proteins in the eye. The comparative qualitative and quantitative proteomics data in the eye versus liver is expected to help in explaining differential metabolic and physiologic activities in the eye.

SIGNIFICANCE STATEMENT Information on the enzymes involved in xenobiotic and endobiotic metabolism in the human eye in relation to the liver is scarcely available. The study employed global proteomic analysis to compare the proteomes of the lens-free whole eye and the liver with a detailed analysis of the enzymes involved in xenobiotic and endobiotic metabolism. These data will help in better understanding of the ocular metabolism and activation of drugs and endobiotics.

Footnotes

    • Received October 25, 2020.
    • Accepted April 8, 2021.
  • ↵1An.B. and Ab.B. contributed equally.

  • This work was supported by funding from the Department of Pharmaceutical Sciences, Washington State University, Spokane, WA; Department of Pharmaceutics, University of Washington, Seattle, WA; Novartis Institutes for BioMedical Research, Cambridge, MA; and National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.

  • https://dx.doi.org/10.1124/dmd.120.000297.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2021 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 49 (7)
Drug Metabolism and Disposition
Vol. 49, Issue 7
1 Jul 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparative Proteomics Analysis of the Postmitochondrial Supernatant Fraction of Human Lens-Free Whole Eye and Liver
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Comparative Proteome of Human Eye and Liver

Ankit Balhara, Abdul Basit, Upendra A. Argikar, Jennifer L. Dumouchel, Saranjit Singh and Bhagwat Prasad
Drug Metabolism and Disposition July 1, 2021, 49 (7) 592-600; DOI: https://doi.org/10.1124/dmd.120.000297

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Comparative Proteome of Human Eye and Liver

Ankit Balhara, Abdul Basit, Upendra A. Argikar, Jennifer L. Dumouchel, Saranjit Singh and Bhagwat Prasad
Drug Metabolism and Disposition July 1, 2021, 49 (7) 592-600; DOI: https://doi.org/10.1124/dmd.120.000297
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
  • In vitro downregulation of OATP1B1 by retinoids
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics