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ABSTRACT

A dataset consisting of measured values for LogD, solubility, meta-
bolic stability in human liver microsomes (HLMs), and Caco-2 perme-
ability was used to evaluate the prediction models for lipophilicity
(S+LogD), water solubility (S+Sw_pH), metabolic stability in HLM
(CYP_HLM_Clint), intestinal permeability (S+Peff), and P-glycoprotein
(P-gp) substrate identification (P-gp substrate) in the software ADMET
Predictor (AP) from Simulations Plus. The dataset consisted of a total
of 4,794 compounds, with at least data from metabolic stability deter-
minations in HLM, from multiple discovery projects at Medivir. Our
evaluation shows that the global APmodels can be used for categori-
zation of high and low values based on predicted results for meta-
bolic stability in HLM and intestinal permeability, and to give good
predictions of LogD (R25 0.79), guiding the synthesis of new com-
pounds and for prioritizing in vitro ADME experiments. The model
seems to overpredict solubility for the Medivir compounds, however.
We also used the in-house datasets to build local models for LogD,
solubility, metabolic stability, and permeability by using artificial neu-
ral network (ANN) models in the optional Modeler module of AP.

Predictions of the test sets were performed with both the global
and the local models, and the R2 values for linear regression for
predicted versus measured HLM in vitro intrinsic clearance (CLint)
based on logarithmic data were 0.72 for the in-house model and
0.53 for the AP model. The improved predictions with the local
models are likely explained both by the specific chemical space of
the Medivir dataset and laboratory-specific assay conditions for
parameters that require biologic assay systems.

SIGNIFICANCE STATEMENT

AP is useful early in projects for predicting and categorizing
LogD, metabolic stability, and permeability, to guide the synthesis
of new compounds, and for prioritizing in vitro ADME experi-
ments. The building of local in-house prediction models with the
optional AP Modeler Module can yield improved prediction suc-
cess since these models are built on data from the same experi-
mental setup and can also be based on compounds with similar
structures.

Introduction

In vivo drug disposition is dependent on the interactions between
the drug and the body. During the drug discovery phase, chemical
synthesis is guided toward potent compounds with physicochemical
and absorption, distribution, metabolism, and excretion (ADME)
properties that allow the drug to reach effective concentrations at
the target (Ballard et al., 2012; Sohlenius-Sternbeck et al., 2016).
Also, compounds should show low toxicity (Kramer et al., 2007).
Early characterization and understanding of the properties of new
chemical entities facilitate the further optimization of a chemical
series toward a new drug candidate.
Reliable in silico prediction tools for ADME properties can help deci-

sion making in the early phase of drug discovery, even before experi-
mental data are available (van de Waterbeemd, 2003; Moda et al.,
2008; Wang et al., 2015; Alqahtani, 2017; Kazmi et al., 2018; Stålring

et al., 2018). With such tools, the chemical design and synthesis can be
prioritized and focus on compounds with the best potential to show
desired properties later in vivo. The building of quantitative structur-
e–activity/quantitative structure–property relationships (QSAR/QSPR)
models is highly dependent on the quality of the training set data (Glee-
son and Montanari, 2012). Moreover, metabolism, distribution and
excretion involve multi-mechanistic processes which make the building
of in silico models challenging.
The use of a commercial software for predictions of chemical and

ADMET properties is convenient, since such tools can be used with vir-
tual compounds and do not require any user data while measured data
are needed for local model building. However, in the commercial mod-
els, the chemical space of the local compounds may not be covered. It
is also likely that commercial models are built on datasets from multiple
sources with dissimilarities in the experimental setup. For many assays,
the experimental variability between different laboratories is substantial
(Hayeshi, 2008; Liu, 2015), which often makes it desirable to build in-
house local models. A local model would also better cover the chemical
space of in-house compounds, especially within a project/project series
with similar structures, and the user can have control over the training
set. However, when building in-house models, a large enough training
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set with good quality data covering the chemical space is needed. For
these reasons, large pharmaceutical companies have their own dedicated
modelers responsible for building in-house project-specific QSAR/
QSPR models.
Several commercial software types or online prediction tools are

available for ADME, pharmacokinetic, pharmacokinetic–pharmacody-
namic, DDI (drug–drug interactions), and toxicity predictions. We have
previously successfully used GastroPlus from Simulations Plus, Inc., as
part of a strategy to identify risks for DDI in drug discovery (Sohlenius-
Sternbeck et al., 2018). ADMET Predictor (AP) from Simulations Plus,
Inc. is a commercially available software for prediction of physical
chemistry, ADME and toxicity parameters from compound structures.
In this work, we used a dataset with experimental in-house data to

evaluate whether the global models in the commercially available AP
software can be used as tools in early drug discovery (before in-house
data are available). The parameters predicted were water solubility, lipo-
philicity, metabolic stability in human liver microsomes (HLM), perme-
ability and whether a compound will be a substrate for P-glycoprotein
(P-gp). Included in the study were 4794 compounds in the Medivir
database with metabolic stability data in HLM. The dataset consists of
compounds from multiple discovery projects at Medivir, and it com-
prises mainly protease inhibitors and nucleoside analogs, which may
not be well represented in the training set for the global models. We
evaluated the AP models for LogD (S1LogD), water solubility
(S1S_pH), metabolic stability in HLM (CYP_HLM_Clint), permeabil-
ity (S1Peff), and P-gp substrate (Yes/No) by comparing predicted val-
ues with experimental results.
The ADMET Modeler tool is an optional module in AP and can be

used to build local and/or project specific models based on QSAR/
QSPR and by using chemical descriptors obtained with the AP soft-
ware. The module is licensed separately and can be used without exten-
sive knowledge in modeling. With the ADMET Modeler Module, local
ANN models for Log D, solubility, metabolic stability and permeability
were built using the Medivir dataset, and the models were tested on in-
house compounds as well as on commercially available reference com-
pounds. The outcome of the local in-house models was compared with
the outcome of the global AP models. A good training set is required
for a predictive outcome, and the larger and the more similar the struc-
tures in the training set the better the predictive outcome, but we have
previously built local models for projects in lead optimization phase
based on training sets of about 20 similar compounds from a single
compound series. These were useful and predictive for the next round
of synthesis but had to be rebuilt often as the results were used to
improve the structures, moving away from the training set structures
(unpublished results).

Materials and Methods

Chemicals. All chemicals were of analytical grade and obtained from com-
mercial suppliers.
Characteristics of the Medivir Dataset. The vast majority of the com-

pounds in the Medivir dataset had a purity $95% according to high-performance
liquid chromatography (HPLC) analysis (no compound had a purity #80%).
Compounds observed to be chemically unstable or poorly soluble during the
experiments were removed (i.e., 78 compounds). The distribution of molecular
weight (of the remaining 4794 compounds) and measured LogD (1198 com-
pounds) for the Medivir compounds are shown in Figs. 1A and B, respectively.
There were 2236 zwitterions, 1888 bases, 623 acids, 44 neutrals, and 3 com-
pounds with mixed pKa values in the dataset. Most of the acids were weak with
pKa values above 7 (only 52 acids had a pKa below 5). Also, most of the bases
were weak bases with pKa below 7 (only 385 bases had a pKa above 8).
Predictions of ADME Properties. Predictions of ADME properties were

made using the ADMET Predictor software, here called AP (version 9.5,

Simulations Plus, Inc., Lancaster, CA; http://www.simulations-plus.com), and the
chemical structures were defined by the simplified molecular-input line-entry sys-
tem. The software models for LogD (S1LogD), water solubility (S1Sw_pH, i.e.,
solubility at a certain chosen pH, here pH 7.4), metabolic stability
(CYP_HLM_Clint), effective jejunal permeability (S1Peff), and P-gp substrate
identification were evaluated using the Medivir dataset.

Moreover, in-house local models were built on training sets from the Medivir
dataset, using artificial neural network ensembles in the optional ADMET Mod-
eler module (Modeler). The Modeler uses an early stopping technique, in which
the interplay between the model complexity and quality of output are taken into
account to avoid the generation of an overtrained model. The in-house models
for solubility, HLM CLint, and Caco-2 permeability were based on logarithmic
data. A training set that represented approximately 75–80% of the measured val-
ues was used for each parameter, and the remaining 20–25% was used as a test
set to evaluate the model. The test sets were selected in the ADMET Modeler
module based on Kohonen mapping (Yan and Gasteiger, 2003). The test sets
were also evaluated in the corresponding ADMET Predictor software global
models. Each model was rebuilt at least four times, and the deviation for each
statistical parameter (see the statistical section) was around 10% or less between
the models. Tables and figures show data from one representative model for
each assay.
Determination of LogD. Determination of LogD was performed for Medivir

by GVK Biosciences Limited (Hyderabad, India). LogD was determined by

Fig. 1. Characteristics of the Medivir dataset (4794 compounds) demonstrated by
histograms showing (A) the distribution of molecular weight and (B) the distribu-
tion of measured LogD (1198 compounds).
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measuring the partition coefficient between water and octanol at pH 7.4. Fifteen
microliters of test compound stock solution (10 mM in DMSO) was added to
500 ml of octanol in 3 replicates and vortexed for 10 minutes on a plate shaker at
1200 rpm. Five hundred microliters of 10 mM phosphate buffer, pH 7.4, was
added, and the mixture was vortexed for another hour at 1200 rpm. The samples
were allowed to settle for 20 minutes and then centrifuged at 4000 rpm for 30
minutes at room temperature for complete phase separation and analyzed by
HPLC-UV absorbance.
Determination of Kinetic Solubility. Kinetic solubility measurements were

also performed at GVK Biosciences Limited (Hyderabad, India). A stock solu-
tion of 10 mM compound in DMSO was added to 10 mM phosphate buffered
saline, pH 7.4, to give a final compound concentration of 100 mM in 10 mM
phosphate with 1% DMSO. After a period of vigorous vortexing, the precipitate
was removed by vacuum filtration. No correction for non-specific binding was
performed. The compound concentration in the resulting filtrate was determined
by HPLC-UV absorbance. The kinetic solubility assay could not generate solu-
bilities above 100 mM since that was the final concentration added in the assay.
Thus, higher solubilities were reported as >100 mM.
Determination of Permeability. Permeability in Caco-2 cells (Artursson

et al., 2001) was assayed at Medivir or at GVK Biosciences Limited (Hyderabad,
India) using the same assay setup (also evaluated with reference compounds) as
described below. Caco-2 cells, at passage number 36, were used in the transport
experiments. The cells were purchased from the American Type Culture Collec-
tion (Middlesex, UK). Caco-2 cells were seeded in 96-well plates (12,000 cells/
well) and cultured for 21 days on cell culture transwell inserts (Transwell). The
integrity of the cell monolayer was determined using Lucifer yellow measured in
an Envision multilabel reader at Ex/Em 428/535 nm. Transepithelial electrical
resistance was also measured to determine the integrity of the cell barrier. The
transepithelial electrical resistance value was above 230 ohms × cm2 in all
experiments.

The permeability of the test compound (at 10 mM) over a Caco-2 cell mono-
layer from the apical to the basolateral compartment (A to B) was investigated in
duplicates over a period of 120 minutes. Hank's Balanced Salt Solution (HBSS),
pH 6.5, containing 25 mM of morpholino ethane sulfonic acid (MES) was used
as the apical buffer, and HBSS, pH 7.4, containing 25 mM of HEPES and 1%
bovine serum albumin (BSA) as the basolateral buffer. The test compound (10
mM) in apical buffer was added to the apical well. Incubation was performed at
37�C, and the plates were kept shaking at approximately 150 rpm. At the 30-
minute time point, an aliquot of basolateral sample was collected and replenished
with the same volume of basolateral buffer. At 120 minutes, samples were col-
lected from the basolateral and apical chambers. The donor samples were diluted
with basolateral buffer (1:1, v/v), and the receiver samples were diluted with api-
cal buffer (1:1, v/v). Possible efflux of test compound was investigated by block-
ing the MDR1 and BCRP efflux pumps in the A to B assay using 5mM
GF120918 (Elacridar) (GF).

In apical to basolateral (ABBA) experiments, the bidirectional permeability of
test compound (at 10 mM) through a Caco-2 cell monolayer from the apical to
the basolateral compartment and from the basolateral to the apical compartment
was investigated in duplicate samples over a period of 120 minutes. HBSS, pH
7.4, containing 25 mM of HEPES was used as a buffer in the ABBA experi-
ments. The test compound (10 mM) in ABBA buffer was added to apical wells
(A-B experiment) and to basolateral wells (B-A experiment). Aliquots were col-
lected and treated in the same manner as described above.

All samples were precipitated with four volumes of acetonitrile, containing
losartan as the internal standard, and vortexed for 5 minutes at 1000 rpm, fol-
lowed by centrifugation at 4000 rpm for 10 minutes. Aliquots of the supernatants
were analyzed by liquid chromatography tandem mass spectrometry (see below).

The apparent permeability was calculated as follows:

Papp ¼
dQ
�
dt

C0 � A
(1)

where C0 is the donor concentration at time 0 and A is the surface area and dQ/dt
is the total amount of test compound transported across the cells per unit time.

Estimated 1GF/-GF ratios of >1.5 and efflux ratios >2 were considered as
an indication of efflux, based on validation using a set of reference P-gp sub-
strates (Giacomini et al., 2010).
Determination of In Vitro Intrinsic Clearance. Determination of the

in vitro intrinsic clearance (CLint) in HLM was performed at Medivir or at GVK

Biosciences Limited (Hyderabad, India) using identical assay setup (also evalu-
ated with reference compounds) as described below. Pools of HLM from 50
donors (mixed genders) were purchased from XenoTech, LLC (Kansas City,
US) and stored at -80�C. The microsomes were diluted in 100 mM of phosphate
buffer, pH 7.4. The final concentrations were 1 mM of test compound and 0.5
mg of microsomal protein per mL. Duplicate samples were pre-incubated for 10
minutes at 37�C before starting the reactions by the addition of nicotinamide ade-
nine dinucleotide phosphate to a final concentration of 1 mM (the total incuba-
tion volume was 250 ml). The incubations were stopped by the removal of
aliquots (25 ml) at 0, 5, 15, 30, and 45 minutes to 96-well plates on ice containing
200 ml of stop solution to precipitate proteins. The stop solution, ice-cold acetoni-
trile, contained losartan (100 nmol/L) as an analytical internal standard. Samples
were left on ice for at least 30 minutes to precipitate the microsomal proteins
before removing the precipitate by centrifugation for 20 minutes at 2250 g. Ali-
quots of the supernatants were analyzed by liquid chromatography tandem mass
spectrometry (see below).

The CLint values were obtained from the disappearance curves where the sub-
strate concentration was plotted against the time. The concentration of each test
compound in the incubation was fitted to a first-order elimination equation

C ¼C0 � e�k�Dt (2)

where C is the measured concentration at time t, C0 is the concentration
at time 0 and k is the elimination constant. Curve fit was performed
after natural logarithm transformation of the concentration data.
Intrinsic clearance was calculated as follows:

CLint ¼ k � V (3)

where V is the volume of the microsomal incubation.
The AP model for metabolic stability in microsomes (CYP_HLM_Clint) is based
on the free concentration in the incubation. Since the measured CLint values are
based on total concentrations and the fraction unbound in microsomes was not
known, the predicted values obtained using the AP model were converted to total
as follows:

Total CLint ¼ Unbound CLint � ðS þ fumicÞ (4)

where S1fumic is the predicted fraction unbound in the microsomal
incubation (AP model). The S1fumic model is largely based on a publi-
cation by Austin et al. (2002).
Bioanalysis. The test compounds in the CLint and permeability assays were

quantified by LC/MS-MS (Sciex AB, Stockholm, Sweden or Shimadzu, India),
in principle as described by Sohlenius-Sternbeck et al. (2010). The compounds
were detected in positive or negative electrospray multiple reaction monitoring
mode. Optimizations (parent ion and fragment determination, declustering poten-
tials and collision energy) were performed in advance.
Quality Controls. Since the different assays were run in early screening, pro-

ject compounds were run in one or two separate experiments. Reference com-
pounds were always included in the different experiments as quality controls and
to confirm reproducibility over time and between the Medivir and GVK Bio lab-
oratories. Ketoconazole, metoprolol, and propranolol were used as quality con-
trols in every LogD experiment, since the LogD range of these compounds
covers the LogD for most Medivir compounds. Albendazole and diethylstilbes-
trol were used as quality controls for solubility since these compounds cover the
low concentration range (#10 mM) applied in most in vitro ADME assays, and
flurbiprofen was chosen as a quality control for high solubility. Atenolol,
digoxin, and propranolol were used as permeability quality controls, since these
compounds cover the low to high permeability range. Digoxin and quinidine
were used as quality controls for efflux in every Caco-2 1 GF experiment and in
every ABBA experiment. As a quality control in all HLM experiments each
experiment included incubations containing a cocktail of probe substrates for
human drug-metabolizing enzymes, i.e., phenacetin (for CYP1A2), diclofenac
(CYP2C9), bufuralol (CYP2D6), and midazolam (CYP3A4). Criteria for reject-
ing an experiment was based on whether data were outside two standard devia-
tions of the Manhattan mean. Only project data from accepted experiments were
used. For quality control data obtained in the different assays, see Supplemental
Table 1, A–E.
Bin Categorization. Bin categorization was performed to evaluate the solu-

bility, metabolic stability, and permeability predictions. For solubility, bin A

ADMET Predictor in Early Discovery DMPK Project Work 97
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contained compounds with poor solubilities (<10 mM) that might precipitate in
the in vitro assays and bin D “good” solubilities (>90 lM, close to the added
final concentration in the assay), which should suffice for most discovery studies
except safety studies. Two other bins were created for practical reasons since
some in vitro assays at Medivir were performed at up to 50 mM.

In early discovery, we did not apply strict cut-offs for CLint values, since the com-
pounds are often improved in the optimization phase. An HLM CLint value less than
15 ll/min/mg, was considered stable enough (bin A) to be of interest. A CLint value
higher than 50 ll/min/mg can be considered to predict a low bioavailability over the
liver, but since there is a fairly large uncertainty in the predictions, we raised the cut-
off for bin D to >80 ll/min/mg. Predicted values between 15 and 80 ll/min/mg
were arbitrarily divided into 2 bins to differentiate between closer to “stable” (15-30
ll/min/mg, bin B) and closer to “unstable” (30-80 ll/min/mg, bin C).

The measured apparent permeability (Papp) values were also divided into 4 cate-
gories, A–-D (<2, 2–5, 5–10 and >10 × 10�6 cm/s) and the corresponding cate-
gories A–D used for Peff predictions were <1, 1–2, 2–3 and >3 (10�4 cm/s). The
bin borders were set based on historic in-house data for reference compounds.
Statistics. The root–mean–square error (RMSE) was calculated as a measure

of the error of a model according to the equation below.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN

i¼1 Predicted � Observedð Þ2
N

s
(5)

where N is the number of compounds in the dataset.
The mean absolute error (MAE) was calculated as a measure of the mean absolute
difference between predicted and observed data according to the equation below.

MAE ¼ SN
i¼1abs Predicted � Observedð Þ

N
(6)

Criteria for Accepting an Experiment. The mean ± SD values for each
quality control, obtained from at least 12 independent measurements, were used
to define whether an experiment could be accepted. An experiment was rejected
if data were outside two standard deviations of the Manhattan mean.
Confusion Tables for Calculation of Precision, Sensitivity, Specificity,

and Accuracy. For the 2×2 confusion tables based on P-gp “Yes/No” and
Caco-2 Papp or ABBA, the precision, sensitivity, specificity, and accuracy were
calculated, where TY is predicted True “Yes”, TN is predicted True “No”, FY is
predicted False “Yes”, and FN is predicted False “No”.

Precision (or predictive value) is the proportion of predicted “Positives” that
are true “Positives”:

Precision ¼ Predicted TY
ðPredicted TY þ Predicted FYÞ (7)

Sensitivity (or recall) is the proportion of actual “Positives” that were cor-
rectly predicted:

Sensivity ¼ Predicted TY
ðPredicted TY þ Predicted FNÞ (8)

Specificity is the proportion of actual “Negatives” that were correctly pre-
dicted:

Specificity ¼ Predicted TN
ðPredicted TN þ Predicted FYÞ (9)

Accuracy is the proportion of data that was correctly predicted:

Accuracy ¼

ðPredicted TY þ Predicted TNÞ
ðPredicted TY þ Predicted TN þ Predicted FY þ Predicted FNÞ (10)

For the 4×4 confusion tables for the three models built with four categories
(solubility, metabolic stability and permeability), precision (predictive value) and
sensitivity (recall) were calculated for each bin. The F1-score for each bin is the
harmonic mean of precision and recall, i.e.,

F1� score ¼ 2� precision� recall
ðprecision þ recallÞ (11)

The bin sizes, for the total data set as well as for the test set for each model,
are shown in Table 1. Since we had unbalanced categories, we also used the
Weighted F1 for overall “accuracy”, which takes the weighted mean of the indi-
vidual F1-scores, considering the number of values in each measured category,
i.e., the sum of the F1-scores for each measured category times the number of
compounds in that category divided by the total number of compounds in the
dataset.

Weighted F1 ¼ ððF1A � measured cpdsAÞ
þ ðF1B � measured cpdsBÞ
þ ðF1C � measured cpdsCÞ
þ ðF1D � measured cpdsDÞÞ=ðmeasured cpdsA

þ measured cpdsB þ measured cpdsC

þ measured cpdsDÞ (12)

Results

LogD Predictions. The total number of compounds with measured LogD
was 1198. Fig. 2A shows the S1LogD, predicted by the global model provided
in AP, versus the observed LogD for all compounds. The R2 value was 0.79
(See also Table 2). A local, in-house model, based on a training set (911 com-
pounds) from the Medivir data were built using the AP Modeler module, and
Fig. 2B shows the predicted LogD versus the observed LogD when this local
model was used for the 287 compounds in the test set. The same test set was

TABLE 1

Bin size for the datasets. The measured solubilities were divided into 4 categories, (A–D) (<10, 10–50, 50–90 and >90 mM) and the same categories were used for
binning the predictions. The measured CLint values were divided into four categories, (A–D) (<15, 15–30, 30–80 and >80 ml/min/mg) and the same categories were
used for binning the predictions. The measured apparent permeability values were divided into 4 categories, (A–D) (<2, 2–5, 5–10 and >10 × 10-6 cm/s) and the corre-

sponding categories (A–D) used for effective jejunal permeability predictions were <1, 1–2, 2–3 and >3 (10-4 cm/s).

Parameter Predicted Model
Data
Set

Tot
cpds

Tot Correctly
Predicted

Predicted Bin Size Measured Bin Size

Bin A Bin B Bin C Bin D Bin A Bin B Bin C Bin D

Solubility AP All 2778 1553 69 241 201 2267 582 319 340 1537
AP Test 691 410 13 46 47 585 101 78 92 420
local Test 691 221 92 140 404 55 101 78 92 420

Metabolic stability
HLM CLint

AP All 4794 1779 973 1586 1444 791 1332 598 941 1923
AP Test 1199 442 231 385 382 201 340 135 232 492
local Test 1199 766 235 236 309 419 340 135 232 492

Permeability
Caco-2 Papp

AP, Peff All 2586 1114 1072 856 341 317 962 306 399 919
AP, Peff Test 516 245 220 154 72 70 204 61 78 173
local, Papp Test 516 317 166 90 87 173 204 61 78 173

AP, ADMET Predictor; CLint, in vitro intrinsic clearance; Peff, effective jejunal permeability; Papp, apparent permeability; Tot cpds, total number of compounds.
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also predicted with the global AP model, S1LogD (Fig. 2C). The R2 values,
when performing linear regression for the predicted values versus the measured
values for the test set, using the S1LogD and the in-house LogD model, were
0.79 and 0.89, respectively (Table 2).

Solubility Predictions. The total number of compounds with measured
solubility was 2778. The measured solubilities were divided into 4 categories, A-
D (<10, 10–50, 50–90 and >90 lM) and the same categories were used for bin-
ning the predictions and a 4×4 confusion table constructed. 55% of all measured
values were in the highest category, i.e., >90 lM, and 21% in the lowest cate-
gory, i.e., <10 lM (Table 1). When using the global AP model for all 2778
compounds, <3% (i.e., 69 compounds) had a predicted solubility of <10 lM
(Table 1). Almost 82% of all compounds were predicted to have a solubility
>90 lM. However, 56% of all compounds were correctly predicted, when tak-
ing all categories into consideration, and many were close to the border between
the categories (Table 3).

Fig. 2. Predicted LogD versus measured LogD using (A) the global S1LogD
model (ADMET Predictor model) for all 1198 compounds with measured values,
(B) the in-house (local) model for the test set (287 compounds), and (C) the
S1LogD model for the test set.
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Fig. 3. Predicted solubility versus measured solubility in four categories using
(A) the global S1S_pH model at pH 7.4 (ADMET Predictor model) for all
2778 compounds with measured values, (B) the in-house (local) model for the
test set (691 compounds), and (C) the global S1S_pH model for the test set.
For each bin, the number of compounds with predicted solubility in the specified
range is presented as percentage of total compounds in the bin. Note that for the
S1S_pH model, the solubility was converted from mg/ml to lM.
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A training set consisting of 2087 of the compounds was used to build an in-
house local solubility model using the AP Modeler module. The remaining 691
compounds were the test set. Seventy-one of the 101 compounds (70%) that had
a measured solubility <10 lM were also predicted to be poorly soluble (<10
lM, See Fig. 3B and Table 3). Only 12% of the highly soluble (>90 lM) com-
pounds were predicted to have solubility >90 lM, but 73% were predicted to
have a fairly high solubility (50-90 lM, See Fig. 3B).

Table 2 summarizes the statistics for the linear regression for the plot of pre-
dicted versus measured solubility based on logarithmic data for these com-
pounds. The R2 value was 0.59 for the in-house model and lower for the AP
model (i.e., 0.20 for the test set and 0.26 when using all compounds). The Preci-
sion (Predictive value), Sensitivity (Recall), and F1-score (per bin) for the cate-
gories and the overall accuracy (and Weighted F1) for all models are presented
in Table 3. With the global model, the precision (or predictivity) was similar for
bin A (low solubility, <10 lM) and bin D (high solubilities, >90 lM) with val-
ues between 0.54 and 0.68 when using all compounds or just the test set, indicat-
ing that the test set was representative. Also, both precision and sensitivity were
similar for bins B and C using the global model, and the F1 score was around
0.8 for bin D and below >0.15 for Bins A–C. With the in-house model, the pre-
cision for low-solubility compounds was 0.77 and for high-solubility it was 0.91.
The sensitivity was 0.70 for low solubility compounds but only 0.12 for high-sol-
ubility compounds with the in-house model. Also, the F-score was high (0.74)
for low-solubility compounds and low for high-solubility compounds (0.21). A
total of 32% were correctly predicted with the category boundaries chosen.
When using the global model for the same test set, only 7% of the poorly soluble
compounds but 93% of the highly soluble compounds were correctly predicted.
Thus, 59% of all test compounds were correctly predicted (Table 3).

Predictions of Metabolic Stability in Human Liver Microsomes.
The AP global CYP_HLM_Clint model is based on the unbound concentrations,
and these values were therefore converted to total CLint (see Materials and Meth-
ods) to compare with the measured values for total CLint. The total number of
compounds with measured HLM CLint was 4794. The measured CLint values
were divided into 4 categories, A-D (<15, 15-30, 30-80, and >80 ll/min/mg)
and the same categories were used for binning the predictions. A 4×4 confusion
table was constructed. Around 40% (i.e., 1923 compounds) of the total number
of compounds had a measured CLint value >80 ll/min/mg (bin D) and 28%
(i.e., 1332 compounds) had a low CLint value, category A (Table 1). Of the 1332
compounds measured to be stable (CLint <15 ll/min/mg), 40% were correctly
predicted (Fig. 4A). Of the 973 compounds (20% of all compounds) with a pre-
dicted CLint <15 ll/min/mg, 55% were also stable when measured, while around
18% of the compounds were measured to be unstable (i.e., CLint >80 ll/min/
mg) in the assay. Overall, 37% of all compounds were correctly predicted
(Table 3).

A training set consisting of 3595 of the compounds was used to build an in-
house, local metabolic stability model, which was evaluated using the remaining
1199 compounds (i.e., the test set). Of the 340 compounds with measured high
stability, 59% were correctly predicted (Fig. 4B). 87% of the compounds with a
predicted CLint >80 ll/min/mg had a measured value in the same range. Of the
compounds with a predicted low CLint (i.e., <15 ll/min/mg), 85% had a mea-
sured low CLint, and less than 0.5% had a measured CLint >80 ll/min/mg. Over-
all, 64% of the compounds in the test set were correctly predicted. When using
the global AP model for predictions with the same test set, 37% of the com-
pounds were correctly predicted (Table 3 and Fig. 4C). The prediction success is
summarized in Table 2, demonstrating that the in-house model had a higher R2

value (i.e., 0.71) than the global model (i.e., around 0.5 regardless if using all
compounds or the test set).

The CYP_HLM_Clint model and the in-house CLint model were also used to
predict CLint for a set of commercially available compounds with in-house mea-
sured data (the results are listed in Supplemental Table 2). The prediction success
is shown in Table 4, demonstrating that the in-house model had a higher R2

value (i.e., 0.51) than the global model (i.e., 140).

Permeability. The total number of compounds with measured Caco-2 Papp
was 2586. Since the main AP software does not have a Caco-2 model, perme-
abilities were predicted with the global AP S1Peff model and compared with the
measured Caco-2 values. The Membrane Plus or GastroPlus software, both from
Simulations Plus, could be used to predict Papp values. We did not have access to

Fig. 4. Predicted in vitro intrinsic clearance (CLint) versus measured CLint in four
categories using (A) the global CYP_HLM_Clint model (ADMET Predictor
model), versus measured total HLM CLint for all 4794 compounds with measured
values, (B) the in-house (local) model for the test set (1199 compounds), and (C)
the global CYP_HLM_Clint model for the test set. For each bin, the number of
compounds with predicted CLint in the specified range is presented as percentage
of total compounds in the bin. Note that the predicted CLint from the
CYP_HLM_Clint was converted to total CLint) using the predicted S1fumic

(global ADMET Predictor model).
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these in this study. The local Caco-2 Papp model was built in the AP Modeler
module using inhouse Papp data only.

When using all the compounds, 72% of the compounds with a measured Papp
value of #2 × 10�6 cm/s had a predicted Peff value of <1 × 104 cm/s as shown
in Fig. 5A and Table 3. Of the compounds with a predicted human effective per-
meability in the jejunum, S1Peff, of <1 × 104 cm/s, 64% demonstrated a mea-
sured apparent permeability in Caco-2, Papp, of #2 × 10�6 cm/s (Table 3).
Forty-three percent of the compounds were correctly predicted using the AP Peff
model and these categories.

A training set consisting of 2070 compounds was used to build an in-house,
Caco-2 Papp model, which was evaluated using the remaining 516 compounds.
Table 2 summarizes the statistics for the linear regression for the plot of pre-
dicted versus measured Caco-2 Papp based on logarithmic data. The R2 value
was 0.61 for the in-house model (a R2 value for the global model could not be
obtained since the global model provides a Peff value). Eighty-nine percent of the
compounds in the test set with a predicted Papp #2 × 10�6 cm/s had a measured
value in the same range (Table 3). Of the compounds with a predicted high Papp
(i.e., >10 × 10�6 cm/s), 69% also had a measured high Papp. The in-house model
predicted 61% of the test set correctly. When the global Peff model was used to
predict Caco-2 Papp categories for the test set, 47% were correctly predicted
based on the bin categorization. The sensitivity with both models was around 0.7
for low-permeability compounds but lower for high-permeability compounds.

The in-house model was also used to predict Papp for a set of commercially
available reference compounds with in-house measured data (Supplemental
Table 3). Table 4 shows that the R2 for the regression (based on logarithmic
data) was 0.78 (See Supplemental Table 4 for analysis of variance).

The prediction of P-gp substrates was also investigated. Predicted P-gp sub-
strate (“yes”) was compared with a 1/� P-gp inhibitor ratio of >1.5 in the
Caco-2 assay, and with an ABBA ratio of >2.0 (Table 5). The precision, sensi-
tivity, specificity, and accuracy of these predictions were 75%, 96%, 30%, and
75%, respectively, when compared with the P-gp inhibitor ratio, and 93%, 93%,
22%, and 86%, respectively, when compared with the ABBA ratio.

Discussion

In the present study, the evaluations of the global AP models for
LogD, water solubility, metabolic stability in HLM, and intestinal per-
meability were performed with experimental data from a total of 4794
Medivir compounds (not all compounds had measured data for all
parameters). Also, in-house local models were built by using artificial
neural network (ANN) models in the optional Modeler module of AP.
For each parameter, approximately 75–80% of the Medivir data were
used as a training set, and the remaining compounds were used as a test
set. With the global model, the test set and total dataset for each param-
eter gave similar precision and sensitivity, indicating that the test sets
were representative.
Of the AP global models tested in this study, the S1LogD model

demonstrated the best agreement with observed data (Table 2). This is
likely explained by good agreement in assay output across laboratories,
since the assay setup for the octanol-water partition assay is straightfor-
ward and not dependent on any biologic test systems. The prediction
success was somewhat better with the in-house local LogD model com-
pared with the global model (Table 2).

Solubility is an important parameter for the bioavailability of drugs.
Different methods are used for measuring solubility, e.g., thermodynamic
solubility, kinetic solubility, and dried DMSO solubility (Alelyunas et al.,
2009; Saal and Petereit, 2012). Predictions of solubility are challenging
since it is difficult to obtain consistent data for model building. In this
work, we used a set of in-house data obtained with a kinetic solubility
assay performed at pH 7.4, based on 10 mM of compounds in DMSO
stock solutions, relevant for most early screening assays in which com-
pounds with solubility values below 10 lM may precipitate. Unless high
therapeutic concentrations will be needed, solubilities >90 lM should be
sufficient for preclinical assays and studies (even though high doses in
safety studies in vivo may still be challenging). However, this solubility
will not be relevant for other formulations in later phases. Our data set
was unbalanced, with a majority of compounds having high solubility.
Only a small proportion (<3%) predicted solubility below 10 lM using
the global model, even though the dataset contained 21% compounds
with low solubility. Moreover, most compounds with a low measured
solubility had a high predicted solubility value using the global AP
model. Thus, the S1S_pH (at pH 7.4) model was not very useful for fil-
tering out the poorly soluble compounds for in vitro drug metabolism
and pharmacokinetics (DMPK) for the Medivir dataset. However,
approximately 56% of the compounds were still predicted correctly due
to the large proportion of compounds with high solubility.
The prediction success for low solubility compounds was improved

when the in-house local model was used. The global model overpre-
dicted solubility, and the in-house local model was better at identifying
the low-solubility compounds which could cause assay problems but
underpredicted highly soluble compounds (see F1-scores, Table 3).
However, with a majority of compounds having high solubility, the total
number of correctly predicted compounds was lower for the in-house
model than for the global model (Fig. 3B and weighted F1 in Table 3).
Later in drug development, more accurate solubility measurements in

relevant formulations and biologic matrices will be important. In AP,
the solubility can be predicted at different pHs and also in some biologi-
cally relevant matrices, such as fasted state simulated gastric fluid,
fasted state simulated intestinal fluid, and fed state simulated gastric
fluid which, if low, can help to explain one major reason for poor oral
bioavailability in vivo.
Early screening of metabolic stability in HLM is routinely performed

in drug discovery, since the metabolism of a compound will affect its
overall pharmacokinetics (Sohlenius-Sternbeck et al., 2016). The predic-
tion success for high- and low-CLint compounds was increased when
the in-house local model was used. However, none of the prediction
models predicted CLint accurately in the range between low and high
metabolic stability and do not give a reliable CLint value for scaling to
in vivo, but the models can be useful for categorization of high and low
metabolic stability. Predicted values in the range of 15–30 ll/min/mg
often had measured values <15 ll/min/mg (Figs. 4A and B). This infor-
mation could still be useful for most early projects, when trying to
design metabolically stable compounds.

TABLE 4

Prediction outcome for CLint in HLM and Caco-2 with the AP models and the in-house models for commercially available reference compounds with in-house mea-
sured data (See Supplemental Tables 2 and 3).

Assay Number of Compounds

AP Model In-House Model

RMSE MAE R2 RMSE MAE R2

Human liver microsomal CLint 75 0.454 0.333 0.140 0.313 0.247 0.512
Caco-2 permeability 26 NA NA NA 0.333 0.265 0.782

Analysis based on logarithmic data.
NA: Not available since the ADMET Predictor (AP) model predicted effective jejunal permeability (Peff), not apparent permeability (Papp).
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The AP and in-house models for metabolic stability were also tested
with a set of reference compounds. These are commercially available
compounds and may have been part of the training dataset for the AP
global model. Nevertheless, the prediction outcome demonstrated higher
R2 for the in-house model compared with the AP model (Table 4),
although the structures for the in-house training set were dissimilar to
the reference compounds. This may be due to experimental assay condi-
tions being the same for the reference compounds and the in-house com-
pounds in the training set, while the data for the training set in the AP
global model may have come from several different experimental setups.
Intestinal permeability measurements are important for the under-

standing of absorption and bioavailability of oral drugs. The Caco-2 cell
line is commonly used to measure apparent intestinal permeability and
to give an indication of human absorption (Artursson et al., 2001).
However, the permeability in Caco-2 cells is highly dependent on the
experimental conditions (Hayeshi, 2008). There was no Caco-2 model
available in the main AP software. However, Simulations Plus has pre-
diction models in GastroPlus and MembranePlus. In this work, we used
the global AP Peff model to predict measured Caco-2 Papp values. Pre-
dicted Peff values of 1 and 3.0×10�4 cm/s could be used as cut-offs for
low and high permeability, respectively. However, it is difficult to use
predicted values between 1 and 3.0 ×10�4 cm/s to convert to specific
Caco-2 Papp values or to predict the absolute absorption in vivo for
moderate values. In early discovery, the model could still be used to
indicate very low and high permeability compounds. The in-house Papp
model showed improved predictions for the test set, compared with the
AP Peff model, for low permeabilities (Table 3). The global model
showed somewhat lower precision for low-permeability compounds.
Both the global Peff model and the in-house Papp model could be useful
tools to identify structures with likely low permeability, for the Medivir
compounds, and to guide design and synthesis of more permeable
compounds.
The in-house model for permeability was also tested with a set

of commercial reference compounds, demonstrating similar pre-
diction outcome as for the Medivir dataset with an R2 value of
0.73 (Table 4).
The AP model for P-gp substrate identification was evaluated based

on measured values of effect of P-gp inhibition and efflux ratio in
ABBA. The P-gp model identified a large proportion of the compounds
that were also shown to be P-gp substrates in the in vitro assays, giving
high sensitivity and accuracy in confusion tables (see Table 5). However,
chemical series with compounds that were P-gp substrates were overrep-
resented in the study (68%), and the reason for the low specificity num-
ber can be explained by the low number of negative data in the dataset.
Our evaluation shows that the global AP models can be used for

rough categorization of high and low values in early discovery, based
on predicted results for metabolic stability in HLM and Peff permeabil-
ity, and to give accurate predictions of Log D, guiding the synthesis of
new compounds and for prioritizing in vitro ADME experiments. The
model seems to overpredict solubility for Medivir compounds, however.
It can be useful to also look at pH- and matrix-dependent solubility
models in AP. Local in-house prediction models built with the optional
AP Modeler Module can improve predictions. As more data are gener-
ated, the in-house models will likely have to be rebuilt, when structures
move away from the initial training set.
Predictions of advantageous ADME properties should trigger further

experimental evaluations. There is often a trade off with efficacy and
toxicity so, if in vitro efficacy is promising, selected compounds with
poor predicted properties should be experimentally tested in ADMET

Fig. 5. Predicted intestinal permeability (effective jejunal permeability, Peff, or
apparent permeability, Papp) versus measured Caco-2 Papp in 4 categorizes using
(A) the S1Peff model (ADMET Predictor model) for all 2586 compounds with
measured Papp values, (B) the in-house (local) model for the test set (516 com-
pounds), and (C) the S1Peff model for the test set. For each bin, the number of
compounds with predicted Peff or Papp in the specified range is presented as per-
centage of total compounds in the bin.
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assays to confirm the predictions and be balanced against potency, tox-
icity, predicted dose and dosing regimen. Depending on the specific
project criteria, such as indication, dose, and intended dosing regimen, a
project can, of course, accept compounds with some poor properties.
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TABLE 5

Confusion tables demonstrating AP performance in predicting P-gp substrates for the 387 Medivir compounds tested in the P-gp inhibitor assay and in predicting P-gp
substrates for the 103 Medivir compounds tested in the ABBA assay. Predicted P-gp substrate (“yes”) was compared with a measured 1 P-gp inhibitor/- P-gp inhibi-
tor ratio of >1.5 and with an ABBA ratio of >2.0. The total number of compounds with a measured ratio >1.5 in the 1P-gp inhibitor/-P-gp inhibitor assay was 264

(i.e., 68% of compounds tested), and the total number of compounds with a measured ratio >2 in the ABBA assay was 94 (i.e., 91% of compounds tested).

Caco-2 Assay Setup TY FY TN FN
Precision

TY/(TY+FY) Sensitivity TY/(TY+FN) Specificity TN/(TN+FY) Accuracy (TY+TN)/Total

1/� P-gp inhibitor 254 86 37 10 0.75 0.96 0.30 0.75
ABBA 87 7 2 7 0.93 0.93 0.22 0.86

ABBA, apical to basolateral and basolateral to apical; FN, predicted False “No”; FY, predicted False “Yes”; TN is predicted True “No”; TY, predicted True “Yes.”
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Supplemental Table 1 

The first data column in Supplemental Tables 1A-E summarizes quality control data for 

LogD, kinetic solubility, metabolic stability in HLM and permeability in Caco-2 cells. Criteria 

for rejecting an experiment is based on whether data is outside two standard deviations of the 

Manhattan mean. Only data from accepted experiments were used. 

 

1A. Quality control reference data for LogD. The first data column shows the Manhattan 

mean ± standard deviation from 12 separate experiments. 

Quality control 

reference compound 

LogD Acceptable LogD 

range in assay 

Predicted LogD 

S+LogD model 

In-house 

LogD model 

Ketoconazole 3.21 ± 0.12 3.0-3.45 3.71 3.02 

Metoprolol -0.36 ± 0.07 -0.5-(-0.2) -0.128 0.03 

Propranolol 1.04 ± 0.07 0.9-1.2 0.949 1.09 

 

1B. Quality control reference data for kinetic solubility. The first data column shows the 

Manhattan mean (± standard deviation for diethylstilbestrol) from 191 separate experiments.  

Quality control 

reference compound 

Solubility 

(µM) 

Acceptable 

kinetic solubility 

range in assay 

Predicted 

S+S_pH (µM) 

In-house 

solubility 

model (µM) 

Albendazole <2 <2 60 3.1 

Diethylstilbestrol 7.7 ± 1.6 4.5-11 89 53 

Flurbiprofen >95 >95 29074 73 

 

1C. Quality control reference data for metabolic stability in human liver microsomes. The 

first data column shows the Manhattan mean ± standard deviation from 26 in-house 

experiments. For predicted values see Supplemental Table 2. 

Quality control 

reference 

compound 

CLint 

(µl/min/mg) 

Acceptable CLint 

range in assay 

(µl/min/mg) 

Bufuralol 20.6 ± 2.4 16-25 

Diclofenac 131 ±12.7 105-156 

Midazolam >300 >300 

Phenacetin 10.0 ± 2.3 5-15 

CLint, in vitro intrinsic clearance 

 

 

 



2 
 

1D. Quality control reference data for permeability in Caco-2 cells. The first data column 

shows the Manhattan mean ± standard deviation from 62 separate experiments. For predicted 

values see Supplemental Table 3. 

Quality control 

reference compound 

Papp 

(10-6 cm/s) 

Acceptable Papp range in assay 

(10-6 cm/s) 

Atenolol <1 <1 

Digoxin 1.0 ± 0.6 <2 

Digoxin + 5 µM GF* 6.0 ± 1.9 NA 

Propranolol 17.9 ± 3.8 10-25 

* In the presence of 5 µM GF, a P-gp inhibitor, a 6-fold higher Papp was obtained. 

NA = Not applicable 

GF, GF120918 (Elacridar); Papp, apparent permeability 

 

1E. Quality control reference data for permeability in the Caco-2 ABBA assay. The first data 

column shows the Manhattan mean ± standard deviation from 15 separate experiments. 

Quality control 

reference compound 

ABBA ratio Acceptable ABBA ratio 

range 

Predicted P-gp substrate 

AP model 

Digoxin 15.9 ± 3.8 >2 Yes 

Quinidine 3.2 ± 0.9 >2 Yes 

ABBA, apical to basolateral and basolateral to apical 
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Supplemental Table 2.  

Measured total CLint in HLM for a set of reference compounds and the predicted CLint using 

the global AP model for unbound CLint (CYP_HLM_Clint), converted to predicted total CLint 

using the predicted unbound fraction, S+fu from AP. The last column shows the CLint 

predictions using the in-house CLint model (built on measured total CLint data). Data is the 

mean of at least three independent experiments. 

Compound 
Measured total 

CLint (µL/min/mg) 

CYP_HLM_Clint 

converted to total 

CLint(µL/min/mg) 

In-house HLM 

total CLint model 

(µL/min/mg) 

Abexinostat 6.0 10.2 10.0 

Acetaminophen 6.0 21.6 7.3 

Aliskiren 20.0 13.1 54.4 

Amitriptyline 83.0 18.0 18.7 

Antipyrine 6.0 31.1 14.0 

Atazanavir 100.0 110.8 110.0 

Atenolol 2.8 2.5 6.6 

Belinostat 19.0 13.2 12.7 

Betaxolol 13.0 7.6 13.2 

Bosentan hydrate 15.0 33.1 41.1 

Bufuralol 20.6 10.0 19.5 

Bupropion 6.0 15.5 19.7 

Caffeine 17.0 15.8 5.7 

Carvedilol 47.0 13.9 35.5 

Cerivastatin 9.5 7.8 10.8 

Chlorpheniramine 54.0 29.5 21.8 

Chlorpromazine 45.0 38.2 50.5 

Cimetidine 6.0 15.8 7.5 

Coumarin 49.0 23.0 22.4 

Cyclopropavir 7.0 9.0 5.8 

Degrasyn 14.0 53.7 52.9 

Desipramine 22.0 19.7 19.7 

Diazepam 13.0 17.7 67.2 

Diclofenac 131.0 11.7 14.5 

Diltiazem 58.0 15.8 35.6 

Diphenhydramine 39.0 19.2 12.9 

Dofetilide 7.1 5.4 11.8 

Furafylline 8.0 10.7 6.6 

Furosemide 6.0 9.0 9.3 

Gemfibrozil 29.0 8.3 22.3 

Glipizide 29.0 24.8 13.0 

Granisetron 6.0 8.2 9.1 

Ibudilast 21.0 11.0 34.3 

Ibuprofen 14.0 11.6 16.9 



4 
 

Imipramine 6.0 13.5 29.2 

Irbesartan 14.0 16.0 20.1 

Ketoprofen 13.0 11.7 11.2 

Lorcainide 45.0 23.8 67.0 

Mepazine 48.0 44.1 41.7 

Mephenytoin 6.0 20.9 7.7 

Metoprolol 6.0 5.8 9.7 

Midazolam >300.0 50.0 77.3 

Nadolol 8.1 6.6 8.2 

Naloxone 10.0 8.7 15.3 

Naproxen 11.0 9.6 10.4 

Ondansetron 37.0 27.5 13.7 

Orphenadrine 6.0 20.8 14.8 

Panobinostat 8.0 7.5 7.9 

Paroxetine 18.0 16.2 20.8 

Phenacetin 10.0 16.9 9.9 

Pimozide 66.0 2.6 105.6 

Pindolol 6.0 9.8 10.2 

Pracinostat 13.0 14.6 11.3 

Prazosin 8.0 15.6 12.2 

Propafenone 20.0 11.5 20.0 

Propranolol 30.0 9.2 14.1 

Quinidine 37.0 16.4 18.6 

Resminostat 8.0 10.6 6.7 

Rifampicin 6.0 72.2 15.8 

Risperidone 13.0 6.0 23.5 

Semagacestat 6.0 23.3 9.3 

Sildenafil 110.0 15.8 34.8 

Spautin-1 40.0 36.1 35.1 

Sulfaphenazole 29.0 16.5 15.3 

Temozolomide 13.0 20.1 4.8 

Testosterone 210.0 21.0 100.4 

Ticlopidine 45.0 171.4 55.4 

Tienilic Acid 41.0 14.0 15.9 

Timolol 6.0 6.5 8.3 

Tolbutamide 6.0 10.3 8.0 

Tranylcypromine 6.0 24.1 16.8 

Troglitazone 82.0 6.2 95.3 

Warfarin 6.0 8.3 9.2 

Venetoclax 23.0 2.4 45.8 

Verapamil 200.0 79.8 94.9 

CLint = in vitro intrinsic clearance; HLM = human liver microsomes 
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Supplemental Table 3.  

Measured Caco-2 Papp and predicted Papp from the in-house model for a set of reference 

compounds. Data is the mean of at least three independent experiments. 

Compound Measured Caco-2 Papp  

(10-6 cm/s) 

Predicted Caco-2 Papp (In-

house model, 10-6 cm/s) 

Abexinostat 0.7 2.8 

Aliskiren 0.2 1.2 

Atazanavir 5.3 8.0 

Atenolol <1 1.0 

Belinostat 5.9 11.8 

Cyclopropavir 1.0 1.1 

Degrasyn 4.9 19.7 

Digoxin 1.0 1.1 

Flupentixol 5.7 11.9 

Ibudilast 43.0 23.7 

Mepazine 16.0 14.8 

Midazolam 42.0 18.6 

Panobinostat 0.8 1.8 

Phenacetin 47.0 20.6 

Pimozide 12.0 12.4 

Pracinostat 2.5 3.8 

Propranolol 17.9 10.4 

Resminostat 5.2 2.3 

Rifampicin 12.0 3.7 

Semagacestat 4.0 1.3 

Sotrastaurin 3.3 4.1 

Spautin-1 24.0 16.7 

Thioridazine 18.0 13.5 

Tracedinaline 8.4 13.2 

Venetoclax 1.0 1.8 

Z-Vrpr-Fmk (Malt 

Inhibitor) 

1.0 0.9 

Papp = apparent permeabiliy 
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Supplemental Table 4. 

Analysis of variance for log transformed data shown in Supplemental Tables 2 and 3. 

Assay   Coefficients Standard 

error 

t-ratio P-value Lower 95% Upper 95% 

Caco-2 (in house 

model versus 

measured values) 

Intercept 0.260 0.076 3.42 0.002 0.103 0.418 

Slope 0.667 0.083 8.01 3.11E-08 0.495 0.839 

HLM (global 

model versus 

measured values) 

Intercept 0.825 0.108 7.63 7.03E-11 0.610 1.04 

Slope 0.280 0.081 3.45 0.001 0.118 0.442 

HLM (in house 

model versus 

measured values) 

Intercept 0.568 0.084 6.74 3.21E-09 0.400 0.737 

Slope 0.555 0.063 8.75 5.37E-13 0.428 0.681 

 

 


