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ABSTRACT

Nuclear receptors (NRs), a superfamily of ligand-activated transcription
factors, are critical in cell growth, proliferation, differentiation, metabo-
lism, and numerous biologic events. NRs have been reported to play
important roles in hepatomegaly (liver enlargement) and liver regenera-
tion by regulating target genes or interacting with other signals. In this
review, the roles and involved molecular mechanisms of NRs in hepa-
tomegaly and liver regeneration are summarized and the future per-
spectives of NRs in the treatment of liver diseases are discussed.

SIGNIFICANCE STATEMENT

NRs play critical roles in hepatomegaly and liver regeneration, indi-
cating the potential of NRs as targets to promote liver repair after
liver injury. This paper reviews the characteristics and molecular
mechanisms of NRs in regulating hepatomegaly and liver regener-
ation, providing more evidence for NRs in the treatment of related
liver diseases.

Introduction

Liver possesses many physiologic functions in mammals, such as
metabolism and detoxification. A constant size and mass is critical for a
liver to exert its functions (Michalopoulos, 2017). Under normal condi-
tions, a liver maintains the relative liver weight and hepatocyte numbers
by preprogrammed processes. Hepatomegaly (liver enlargement) refers to

increased liver mass, enlarged hepatocyte size, hyperproliferation, and
increased activity of metabolizing enzymes that modulate the metabolism
of endobiotics and xenobiotics, such as the kinds of drugs (Zhao et al.,
2021), that can be characterized by hepatocyte hypertrophy and hyperpla-
sia. Hypertrophic process refers to the increase in the volume of hepato-
cyte, and hyperplasia process refers to the hepatocellular proliferation
(Ross et al., 2010). Hepatomegaly can be induced by numerous factors
such as alcohol, drug, viral hepatitis, tumor, hormone, inflammation,
excessive nutrition, fatty liver disease, etc. (Wolf and Lavine, 2000). In
addition, hepatomegaly may be induced by primary liver diseases or
might be involved secondly in diseases elsewhere in the body (Kaude
and Deland, 1975). It can be divided into two types: adverse hepatomeg-
aly and nonadverse hepatomegaly (benign hepatomegaly). Nonadverse
hepatomegaly is always induced by drugs or chemicals and would
recover after withdrawal (Hall et al., 2012). The way to distinguish these
two types of hepatomegaly is to evaluate the clinic pathologic evidence
of some biochemical indicators related to liver injury (Hall et al., 2012).
Liver regeneration is an adaptive response induced by specific stim-

uli, including continuous changes in morphologic reconstruction and
gene expression. Various extrinsic and intrinsic factors are involved in
liver regeneration (Forbes and Newsome, 2016). The introduction of the
partial hepatectomy (PHx) model in 1931 greatly promoted studies on
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liver regeneration (Higgins and Anderson, 1931). Liver regeneration
consists of a variety of stages, however, mainly including the following
three: hepatocytes transition into the G1 phase once PHx happens, fol-
lowed by the S phase in 12–15 hours, and then hepatocytes enter the
G2 phase after about 6–8 hours (Court et al., 2002). Liver regeneration
consists of quick induction of proliferation factors to activate quiescent
hepatocytes and start the subsequent process in the cell cycle: accelera-
tion of the recovery of normal liver size and reconstruction of hepato-
cyte quiescence (Fausto, 2000). Hepatocyte hypertrophy is the first
stage of liver regeneration after 70% PHx; in fact, it is sufficient for
hepatocyte hypertrophy to promote the recovery of liver mass after 30%
PHx (Miyaoka et al., 2012). After that, hepatocytes proliferation begins,
which is stimulated by hepatocytes and bile duct epithelial cells to deal
with functional defects (Malato et al., 2011). Previous studies demon-
strated that various signaling pathways participated in liver regeneration.
At the very beginning of liver regeneration, cytokines including inter-
leukin-6 (IL-6) and tumor necrosis factor (TNF) can activate nuclear
factor kappa-B and signal transducer and activator of transcription 3,
then the hepatocyte proliferation process is induced (Taub, 2004). In
addition, some growth factors also take part in liver regeneration. Hepa-
tocyte growth factor can activate phosphatidylinositol 3-kinase/protein
kinase B (AKT) as well as extracellular-regulated kinase pathway to
promote DNA replication and hepatocyte proliferation (Taub, 2004).
MicroRNAs such as miRNA-21 participate in the regulation of the liver
regeneration process (Chen et al., 2016). Liver progenitor cells (LPCs)
also take part in liver regeneration by acting as the origin of new hepa-
tocytes when normal hepatocyte proliferation is severely impaired
(Jiang et al., 2019). Other signaling pathways such as nuclear receptors
also play very important roles in liver enlargement and regeneration.
Nuclear receptors (NRs) are a superfamily of ligand-activated tran-

scription factors that convert different signals into the gene regulation
(Mangelsdorf et al., 1995). Forty-eight types of NRs are now known in
the human body and forty-nine types of NRs are found in mice (Zhang
et al., 2004; Helsen and Claessens, 2014). NRs consist of seven subfa-
milies (NR0-NR6) (Yang et al., 2020); the first six subfamilies were
classified according to sequence homology in 1999 by the Nuclear
Nomenclature Committee, and the newly found NR subfamily with the
one-conserved domain is categorized into subfamily 0 (Liu et al., 2017).
There are typically five domains, which are named as A/B, C, D, E, and
F domain. The A/B domain contains an amino-terminal ligand-depen-
dent activation function domain. The C domain is a DNA-binding
domain containing two zinc fingers. The D domain contains the nucleus
localization sequence, which connects to the DNA-binding domain with

the E domain, which is also known as the ligand binding domain
(LBD). The function of the F domain is still unclear (Vacca et al.,
2013; Liu et al., 2017). The main function of NRs is xenobiotic sensing
and detoxification (Yen, 2015), although they are also significant for
cell growth, proliferation, differentiation, and metabolism and are asso-
ciated with numerous liver diseases including nonalcoholic fatty liver
disease, cholestatic liver disease, and drug-induced liver disease
(Rudraiah et al., 2016). Based on these findings, the structure and func-
tion of NRs and related liver diseases are summarized in Fig. 1. Studies
on NRs have provided better understanding of liver pathology and phys-
iology and some new strategies to treat liver diseases.
Mounting evidence shows that some NRs are important regulators of

hepatomegaly and liver regeneration. For example, pregnane X receptor
(PXR), constitutive androstane receptor (CAR), peroxisome prolifera-
tors-activated receptors (PPARs), farnesoid X receptor (FXR), and liver
X receptor (LXR) have been reported to be closely related to hepato-
megaly and liver regeneration (Rudraiah et al., 2016; Hall et al., 2012).
Thus, this review aims to summarize the role of NRs in hepatomegaly,
liver regeneration, and the involved molecular mechanisms and discuss
future perspectives of NRs in the treatment of liver diseases.

NRs in Hepatomegaly and Liver Regeneration. In this section,
we will review the roles of NRs such as PPARs, PXR, CAR, LXR, and
FXR in hepatomegaly and liver regeneration and the molecular mecha-
nisms involved. The major agonists and antagonists of these NRs are
summarized in Table 1.
PPARs. PPARs are transcription receptors that exert critical func-

tions in regulating energy homeostasis and cell differentiation (Tonto-
noz and Spiegelman, 2008). PPARs consist of PPARa, PPARb/d, and
PPARc (Vacca et al., 2013). Each of these isotypes shows unique physi-
ologic distribution and function in the tissues (Wang, 2010). PPARa is
mainly expressed in the liver, heart, kidney, and intestine, which exerts
critical functions in fatty acid uptake, b-oxidation, and lipid catabolism
(Kersten and Stienstra, 2017). PPARc is mainly expressed in adipose
tissue and is involved in the regulation of adipogenesis, lipid storage,
and glucose homeostasis. PPARb/d is widely expressed in the liver,
brain, kidney, heart, and adipose tissue, which is associated with lipid
catabolism, adipogenesis, wound cure, and keratinocyte differentiation
(Huang et al., 2009; Derosa et al., 2018; Mirza et al., 2019).
It has been reported that PPARa activation by its agonists clofibrate

and gemfibrozil can induce liver enlargement (Lenhard et al., 1999).
Moreover, PPARa is related to direct and compensatory hyperplasia by
inducing the expressions of cell cycle-related genes (Morimura et al.,

Fig. 1. The structure, function of NRs, and related liver diseases.

NR-Induced Hepatomegaly and Liver Regeneration 637

 at A
SPE

T
 Journals on A

pril 17, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


2006). In addition, activation of PPARa by its agonist WY-14643 can
induce the expression of MYC proto-oncogene (c-Myc) and miR-17-92
by inhibiting let-7c, which further promotes hepatocytes proliferation
(Shah et al., 2007). Most recently, it’s found that the activation of
PPARa by WY-14643 can induce hepatomegaly via the yes-associated
protein (YAP)-TEA domain family member (TEAD) signaling pathway
by inducing hepatocytes hypertrophy around the central vein (CV) area
and promoting hepatocytes proliferation around the portal vein (PV)
area in mice liver (Fan et al., 2022). Therefore, PPARa is a potential
modulator for hepatomegaly.
PPARs are also involved in liver regeneration. PPARa deficiency

impairs liver regeneration via altering the expression of the prolifera-
tion-related genes in mice (Anderson et al., 2002). Aldose reductase can
accelerate the liver regeneration process by increasing the PPARa and
PPARc expression in aldose reductase-deficient mice liver (Li et al.,
2020). Recent studies showed that hepatocyte PPARa activation accel-
erates the liver regeneration process after PHx, which is associated with
the regulation of cell cycle and lipid metabolism (Xie et al., 2019).
PPARa agonist WY-14643 was found to accelerate liver regeneration
after PHx by interacting and activating the YAP-TEAD signaling path-
way (Fan et al., 2022).
The activation of PPARc was reported to restrain liver regeneration

in rats. One of the mechanisms is that the activation of PPARc can
inhibit TNF and IL-6, which are important in the early stage of liver
regeneration (Collino et al., 2010). The PPARc agonist thiazolidine-
dione, rosiglitazone can impair liver regeneration by inhibiting the
expression of cyclins in mice (Turmelle et al., 2006). Yu et al. (2003)

reported that PPARc transgenic mice showed hepatic steatosis and
impaired liver regeneration post PHx. Furthermore, PPARc can downre-
gulate cyclin D1, cyclin B1m, and p27 and upregulate p38 mitogen acti-
vated protein kinase, which suppresses the cell cycle in mice (Turmelle
et al., 2006; Yamamoto et al., 2008). PPARc activation exerts anti-
inflammatory effects by inhibiting nuclear factor kappa-B and activator
protein-1 transcription factors in hepatocytes and macrophages (Ogawa
et al., 2005). As a result, PPARc is an important regulator in inflamma-
tion-induced liver regeneration and hepatomegaly. PPARb can modu-
late the phosphoinositide-dependent kinase 1/AKT and E2f transcription
factor signaling pathway, which is closely related to hepatocyte prolifer-
ation and liver regeneration in mice (Liu et al., 2013). Bezafibrate, a
pan-agonist for all PPAR isotypes, suppresses the liver regeneration pro-
cess after PHx in rats by inhibiting serine palmitoyltransferase, suggest-
ing a negative effect of activation of PPARs on liver regeneration
(Zabielski et al., 2010).
PXR. PXR, a ligand-activated transcription factor, is highly expressed

in liver and gut (Kliewer et al., 1998). It usually interacts with retinoid X
receptor a and exerts important functions in regulating the expression of
drug-metabolizing enzymes and transporters that can affect drug disposi-
tion and drug-induced liver injury (Shehu AI, 2018). PXR is also
involved in the progression of various liver diseases such as liver fibrosis
and cholestatic liver disease (Cave et al., 2007; Wallace et al., 2010).
PXR plays a critical role in hepatocyte proliferation and liver size

control. The murine PXR agonist, pregnenolone-16a-carbonitrile (PCN),
can induce liver enlargement, which is abolished in Pxr-deficient mice
(Garg et al., 1975; Staudinger et al., 2001). Zhou et al. (2006) found that
the activation of PXR can induce hepatomegaly with lipid accumulation

TABLE 1

Major agonists and antagonists of NRs

Target Agonist/Antagonist Drug/Compound Reference(s)

PXR Agonist PCN Jiang et al., 2019
Rifampicin Jiang et al., 2019
Imazalil Shizu et al., 2018
Dexamethasone Jiao et al., 2020
Schisandrol B Zhao et al., 2021
Mifepristone Yao et al., 2021

Antagonist ET-743 Chai et al., 2020
Polychlorinated Biphenyls Mani et al., 2013
Biphenyls Mani et al., 2013
Fluconazole Mani et al., 2013
Enilconazole Mani et al., 2013
Sesamin Mani et al., 2013
Metformin Mani et al., 2013

PPARa Agonist Clofibrate Lenhard et al., 1999
WY-14643 Fan et al., 2022
Gemfibrozil Lenhard et al., 1999
Fenofibrate Willson et al., 2000

Antagonist GW6471 Stebbins et al., 2017
MK886 Stebbins et al., 2017
NXT629 Stebbins et al., 2017

PPARc Agonist Rosiglitazone Turmelle et al., 2006
Pioglitazone Collino et al., 2010

Antagonist GW9662 Almahmoud et al., 2021
T0070907 Almahmoud et al., 2021

CAR Agonist CITCO Tschuor et al., 2016
Phenobarbital Huang et al., 2005
TCPOBOP Gao et al., 2021

Antagonist PK11195 Mackowiak et al., 2019
CINPA1 Mackowiak et al., 2019

LXR Agonist T0901317 Jung et al., 2011
GW3965 Minniti et al., 2020

Antagonist GSK2033 Helder et al., 2020
FXR Agonist WAY-362450 Wu et al., 2019

OCA de Haan et al., 2021
Antagonist DY268 Jiang et al., 2021

FLG249 Jiang et al., 2021
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in PXR-humanized mice by treating with rifampicin, which is a typical
agonist of human PXR. YAP is an important transcriptional coactivator
in Hippo pathway and crucial in the control of organ size (Kowalik
et al., 2011). It works as a transcriptional cofactor to participate in organ
size control by binding with TEAD or interaction with other transcrip-
tion factors. It can also regulate liver size and liver regeneration by mod-
ulating hepatocyte proliferation and apoptosis (Patel et al., 2017). Pxr
knockout mice undergoing PHx showed delayed liver regeneration, and
signal transducer and activator of transcription 3 inactivation was
involved in the delayed regeneration process (Dai et al., 2008). Absence
of PXR reduced hepatic fat accumulation accompanied by suppressed
hepatocyte proliferation after PHx, suggesting that PXR-induced lipid
accumulation is required for the hepatic regenerative response after
PHx (Dai et al., 2008). Recent studies showed that PXR-induced hepato-
megaly by PCN is YAP-dependent in mice and PXR interacts with
YAP to promote nuclear YAP accumulation and then upregulation of
YAP target genes (Jiang et al., 2019). Schisandrol B, a PXR agonist,
can induce hepatomegaly and promote liver regeneration in mice via
activation of PXR and YAP (Zhao et al., 2021). Besides, schisandrol B
can also promote liver regeneration after cholestatic liver injury in mice
via increasing cyclin D1 and proliferating cell nuclear antigen expression
while reducing p53 and p21 expression (Zeng et al., 2017). High dose
dexamethasone treatment can induce hepatomegaly and hepatocyte
enlargement in mice by the activation of PXR and YAP signaling path-
way and lipid accumulation (Jiao et al., 2020). Furthermore, a high dose
of mifepristone, which is a synthetic antiprogesterone drug, can induce
hepatomegaly in mice by activation of PXR, promoting PXR and YAP
nuclear translocation, and then upregulating their downstream targets
such as CYP3A11, CYP2B10, UGT1A1, ANKRD1, and CTGF (Yao
et al., 2021). Additionally, PXR can elevate CAR- and PPARa-medi-
ated, xenobiotic-induced hepatic proliferative response in mice (Shizu
et al., 2013). Yoshinari (2019) found that Imazalil can activate PXR to
promote hepatocyte proliferation induced by CAR agonist 1,4-bis [2-
(3,5-dichloropyridyloxy)] benzene (TCPOBOP) in mice liver (Yoshinari,
2019). PXR-promoted liver regeneration can be inhibited by forkhead
box O3 (Shizu et al., 2016). DNA damage-inducible 45b (GADD45b)
is a direct target of PXR (Kodama and Negishi, 2011), which facilitates
hepatocyte survival by regulating c-Jun N-terminal kinase pathway in
the liver regeneration in mice (Papa et al., 2008).
CAR. CAR is an important intracellular xenobiotic sensor, which is

mainly expressed in the small intestine and liver (Xu et al., 2016). Like
PXR, CAR regulates various genes encoding drug metabolizing
enzymes such as CYP3A3 and CYP2B subfamily members, uridine 50-
diphosphate-glucuronosyltransferases, sulfotransferases, and glutathione
S-transferases (Gotoh et al., 2015). CAR is located in the cytoplasm by
forming a complex with the cytoplasmic CAR retention protein and
heat shock protein 90. Once activated, the complex is dissociated and
CAR is translocated into the nucleus, where it can bind with retinoid X
receptor a, then the downstream target genes are activated (Kodama
and Negishi, 2006). CAR plays a critical role in gluconeogenesis, lipid
metabolism, hormone regulation, and hepatocyte proliferation. It is
expressed at a higher level in the developing liver compared with the
adult liver (Pascussi et al., 2007).
CAR also plays a vital role in hepatomegaly and liver regeneration.

CAR activators, including phenobarbital and “barbital-like” compound
TCPOBOP, can directly induce hepatomegaly (Costa et al., 2005),
which is the consequence of hyperplasia and hypertrophy. Hepatocytes
enlargement around the CV area and hepatocytes proliferation around
the PV area were observed in TCPOBOP-treated mice (Gao et al.,
2021). It has been reported that CAR activation can promote the Mdm2
proto-oncogene (Mdm2) gene expression to start the cell cycle and
restrain apoptosis (Huang et al., 2005; Gao et al., 2021). The YAP-

TEAD signaling pathway is also involved in CAR-mediated hepato-
megaly. TCPOBOP-induced CAR activation promotes the translocation
of YAP and elevates the expression of YAP-TEAD downstream targets,
whereas CAR-dependent hepatocyte proliferation was milder in Yap
knockout mice, suggesting that YAP is critical in CAR-promoted hepa-
tomegaly (Abe et al., 2018; Gao et al., 2021). Verteporfin, a compound
which can inhibit the interaction of YAP/TEAD, can relieve TCPO-
BOP-induced hepatomegaly in mice (Abe et al., 2018). Besides, c-Myc
and forkhead box M1 gene are the key mediators of TCPOBOP-
induced hepatomegaly (Blanco-Bose et al., 2008). Forkhead box M1
(FoxM1) represses phosphatase and tensin homolog and activates the
AKT signal pathway to promote liver growth (Yarushkin et al., 2019).
Additionally, GADD45b has been reported to be related to the CAR-
associated liver hypertrophy (Columbano et al., 2005). CAR can interact
with GADD45b to suppress p38 mitogen activated protein kinase sig-
naling and promote hepatocyte proliferation in mice (Hori et al., 2018).
A previous study showed that the lack of b-Catenin (CTNNB1) can
suppress CAR activation-induced hepatocyte proliferation (Kodama and
Negishi, 2006). Besides, TCPOBOP-induced proliferation is impeded
by co-interruption of the mesenchymal epithelial transition factor recep-
tor and epidermal growth factor receptor signaling, even if CAR is acti-
vated (Bhushan et al., 2019).
As for liver regeneration, Car knockout mice displayed impaired

capability of liver regeneration (Tschuor et al., 2016), whereas TCPO-
BOP can accelerate liver regeneration post PHx by promoting hepato-
cyte hypertrophy around the CV area and hepatocytes proliferation
around the PV area in mice (Gao et al., 2021). The induction of CAR
might be a possible therapeutic way to prevent small-for-size-syndrome
(SFSS). It has been demonstrated that insufficient CAR induction can
lead to liver failure after excessive tissue loss. Reactivation of CAR by
its agonist (6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbalde-
hydeO-(3,4-dichlorobenzyl)oxime) (CITCO) can promote the restora-
tion of biochemical indicators related to liver injury after SFSS
(Tschuor et al., 2016). As a result, CAR is considered to be a primary
mitogen to induce hepatocyte proliferation after PHx (Costa et al.,
2005).
LXR. Up to now, there are two family members of LXR: LXRa and

LXRb (Peet et al., 1998). LXRa is mainly expressed in the liver, but
LXRb is relatively low in liver. LXR participates in modulating the
expression of the genes which are involved in lipid and cholesterol
homeostasis and plays critical roles in membrane synthesis, cellular dif-
ferentiation, and proliferation (Lo Sasso et al., 2010).
It has been reported that LXR is associated with hepatomegaly, but

the mechanism involved remains unclear. Mice treated with LXR ago-
nist T0901317 showed hepatomegaly, with a triglyceride accumulation
(Jung et al., 2011). However, the LXR agonist T0901317 is also an ago-
nist of PXR in vivo and in vitro, so the effect could have been mediated
by PXR activation. The modulation of hepatomegaly and hepatocyte
proliferation by T0901317 should be further studied to find out whether
this effect is mediated by PXR activation or LXRa inhibition (Mitro
et al., 2007; Zhang et al., 2020). Besides, LXR is inhibited in the liver
regeneration process. After PHx, hepatocyte proliferation is induced
accompanied by suppression of LXR in mice liver (Lo Sasso et al.,
2010). Inhibition of LXR-transcriptional pathways is crucial to ensure
cholesterol levels of regenerating hepatocytes, and the activation of
LXR by its agonist GW3965 can significantly reduce liver regeneration
capacity during PHx (Lo Sasso et al., 2010). Previous studies showed
that hydroxysteroid sulfotransferase 2B1b can promote liver regenera-
tion by inhibiting LXRa activation in fatty liver and T0901317 treat-
ment can attenuate the effect (Zhang et al., 2020). However, whether
the inhibition of LXR causes liver regeneration is still questionable.
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FXR. There are two FXR family members: FXRa and FXRb. How-
ever, FXRb is considered as a pseudogene in humans (Otte et al.,
2003). FXR is mainly expressed in the liver, kidney, intestine, and adre-
nal cortex (Parks et al., 1999). FXR is one of the main transcriptional
regulators of bile acid homeostasis. It can interact with RXR to activate
or inhibit FXR response element target genes by working with diverse
coactivators that participate in the modulation of cell cycle, apoptosis,
and lipid metabolism (Modica et al., 2010).
Hepatomegaly is induced and alanine aminotransferase and alkaline

phosphatase are increased in Fxr-null mice, which is related to elevated
bile acid levels (Sinal et al., 2000; Kitada et al., 2003; Yang et al., 2007).
However, long-term treatment of FXR agonist WAY-362450 can induce
hepatomegaly in mice liver by activating cyclin D1 (Wu et al., 2019),
and the mechanism of inducing hepatomegaly is different from Fxr-null
mice. Although FXR is not necessary for liver growth induced by preg-
nancy, lack of FXR affects its normal mechanisms. In Fxr-deficient
mice, hepatomegaly induced by pregnancy is carried out by the adaptive
hepatocyte hyperplasia rather than hypertrophy (Milona et al., 2010).
FXR is also necessary in modulating liver regeneration. FXR plays a

critical role in restoring the CCl4-injured liver by disrupting hepatocyte
death and inducing liver regeneration (Meng et al., 2010). Fxr knockout
mice undergoing PHx showed elevated bile acid level, higher mortality,
and delayed liver regeneration (Huang et al., 2006). Bile acid overload-
ing can induce DNA oxidative damage, inflammation, and cell overpro-
liferation in Fxr-deficient mice (Vacca et al., 2013). The activation of
FXR mediated by liver injury or bile acid signaling after hepatectomy

can induce liver regeneration via different mechanisms (Modica et al.,
2010). The hepatic bile acid level tends to elevate after PHx under nor-
mal conditions. Increased bile acid can activate FXR to induce FoxM1b
and c-Myc expression to protect hepatocytes from bile acid toxicity
damage. Besides, it is also found that FXR alleviates the defects of age-
related liver regeneration by inducing the expression of Foxm1b with
elevated DNA-duplication of hepatocytes (Chen et al., 2010).
It was confirmed that FXR activation can improve the liver metabolic

ability, promote liver regeneration, and inhibit cell death, which shows
the therapeutic potential for the FXR agonist for the prevention of liver
failure during liver transplantation and resection (Vacca et al., 2013). It
has been reported that the FXR agonist, obeticholic acid (OCA), can pro-
mote liver growth and liver regeneration during obstructive cholestasis.
However, another study challenges the finding mentioned above because
OCA treatment of rats cannot promote liver regeneration after cholestasis
(de Haan et al., 2021). Some studies show that biliary epithelial cells
(BEC) of zebrafish can transform into new hepatocytes by dedifferentia-
tion into LPCs and then LPCs differentiated into hepatocytes, and BEC-
derived cells proliferation also makes contributions to new hepatocytes
formation (Choi et al., 2014). It has been reported that FXR activation in
zebrafish can increase phosphatase and tensin homolog activity and
inhibit phosphatidylinositol 3-kinase-mammalian target of the rapamycin
pathway, which impedes BEC-driven liver regeneration, suggesting that
targeting FXR for liver regeneration in clinical trials should be more per-
sonalized (Jung et al., 2020). Taken together, FXR is necessary in the
modulation of liver repair and regeneration.

TABLE 2

Effects of NRs and their agonists on liver size and liver regeneration

NRs Activators or Agonists Effects on liver size and Regeneration Reference(s)

PXR PCN Induces liver enlargement and liver
regeneration via activation of
YAP signaling pathway

Jiang et al., 2019

PXR Rifampicin Induces liver enlargement and liver
regeneration via activation of
YAP signaling pathway

Jiang et al., 2019

PXR Imazalil Activates PXR to elevate
hepatocyte proliferation induced
by CAR

Shizu et al., 2018

PXR Dexamethasone Induces hepatomegaly by the
activation of YAP signaling
pathway and lipid accumulation

Jiao et al., 2020

PXR Schisandrol B Induces hepatomegaly and
hepatocyte proliferation by
activation of YAP signaling
pathway

Zhao et al., 2021

PXR Mifepristone Induces hepatomegaly by
promoting PXR and YAP
nuclear translocation

Yao et al., 2021

PPARa Clofibrate Induces liver enlargement Lenhard et al., 1999
PPARa WY-14643 Promotes liver enlargement and

liver regeneration via activation
of YAP-TEAD signaling
pathway

Fan et al., 2022

PPARa Gemfibrozil Induces liver enlargement Lenhard et al., 1999
PPARc Rosiglitazone Impairs liver regeneration process

by down-regulation of cyclin
expression

Turmelle et al., 2006

CAR CITCO Promotes hepatomegaly and liver
regeneration in SFSS model

Tschuor et al., 2016

CAR Phenobarbital Induces hepatomegaly by
activating Mdm2 gene
expression

Huang et al., 2005

CAR TCPOBOP Promotes hepatomegaly by
activating YAP signaling
pathway

Abe et al., 2018; Gao et al., 2021

LXR T0901317 (LXRT) Induces hepatomegaly with an
increased level of triglyceride

Jung et al., 2011

FXR WAY-362450 Induces hepatomegaly by
activating cyclin D1

Wu et al., 2019
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Discussion and Perspectives

Hepatomegaly can be induced by numerous factors and divided into
nonadverse hepatomegaly and adverse hepatomegaly (Wolf and Lavine,
2000). Liver regeneration is a critical process in liver repair post injuries,

and it can be affected by many intrinsic and extrinsic factors (Forbes and
Newsome, 2016). Liver regeneration after PHx is a process in which the
residual liver tissue expands to function normally, and it is also known as
compensatory hepatomegaly (Fausto et al., 2006). NRs take part in the

Fig. 2. Mechanisms involved in NR-mediated hepatomegaly (A) and liver regeneration (B).

TABLE 3

Mechanisms involved in NR-promoted hepatomegaly and liver regeneration

NRs Effects Mechanisms Reference(s)

PXR Hepatomegaly" Induces hyperplasia and
hypertrophy by YAP signaling
pathway

Jiang et al., 2019

PXR Liver regeneration" Accelerates liver regeneration by
YAP signaling pathway

Yoshinari, 2019; Jiang et al., 2019

PPARa Hepatomegaly" 1. Induces gene expression of Ras,
Rho a, and c-Myc oncogene
expression, which are important
for hepatocyte proliferation and
hepatic hyperplasia;

Morimura et al., 2006, Shah et al.,
2007; Fan et al., 2022

2. Interacts with YAP-TEAD
signaling pathway

PPARa Liver regeneration" 1. Interacts with YAP-TEAD
signaling pathway and induces
liver regeneration

Fan et al., 2022; Xie et al., 2019

2. Regulates cell cycle and lipid
homeostasis

PPARc Liver regeneration# Reduces TNF and IL-6 in the
liver, which are important in the
early phase of liver regeneration

Collino et al., 2010

CAR Hepatomegaly" 1. Activates the expression of the
Mdm2 gene to start the cell
cycle and restrain apoptosis;

Huang et al., 2005, Costa et al.,
2005, Hori et al., 2018; Gao
et al., 2021

2. YAP can regulate the expression
of proliferation genes such as c-
Myc and FoxM1

3. GADD45b has been reported to
be related to the CAR-
associated liver hypertrophy

4. Interacts with YAP-TEAD
signaling pathway

CAR Liver regeneration" YAP activation induced by CAR
can regulate the expression of
proliferation-related genes such
as c-Myc and FoxM1

Costa et al., 2005; Gao et al., 2021

LXR Hepatomegaly Not clear —

LXR Liver regeneration# LXR activation can reduce liver
regeneration capacity during
PHx

Lo Sasso et al., 2010

FXR Hepatomegaly 1. Fxr-null mice showed increased
bile acid level and
hepatomegaly

Wu et al., 2019; Yang et al., 2007

2. Chronic activation by WAY-
362450 induces hepatomegaly
by activating cyclin D1

FXR Liver regeneration" Induces the expression of Foxm1b
and c-Myc

de Haan et al., 2021
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regulation of cell growth and functions and are critical regulators of hepato-

cyte size and proliferation, and thus hepatomegaly and liver regeneration.

The effects of NRs and their agonists on liver size and liver regeneration

are listed in Table 2 and the major mechanisms for NR-mediated hepato-

megaly and liver regeneration are summarized in Fig. 2 and Table 3. NRs

are critical in the modulation of inflammation, proliferation, lipid metabo-

lism, and cell cycle, which plays a critical role in liver regeneration and

hepatomegaly progress. Thus, the NR transcriptome can serve as a thera-

peutic target for liver diseases that affects the proliferation of hepatocytes

(Vacca et al., 2014). Regenerative process is involved in many liver dis-

eases including cholestasis, fatty liver diseases, hepatic fibrosis, and drug-

induced liver injury, which indicates the universal potential of NRs for pro-

moting liver repair in various hepatic diseases. In addition to the nuclear

receptors mentioned above, the aryl hydrocarbon receptor is also important

in hepatomegaly and liver regeneration, AhR-null mice displayed hepato-

megaly after flutamide treatment (Gao et al., 2016), and the liver regenera-

tion capability was improved in AhR-null mice after short-term CCl4
treatment (Moreno-Mar�ın et al., 2017). Many NRs agonists have been

widely used in clinics, such as PXR agonist rifampicin, CAR agonist phe-

nobarbital, PPARa agonist fibrates, and PPARc agonist rosiglitazone.

Future studies are required to assess their potential in promoting liver

regeneration in clinics.
YAP has been reported to be the common mechanism involved in

PXR, CAR, or PPARa-induced hepatomegaly and liver regeneration
(Jiang et al., 2019; Gao et al., 2021; Fan et al., 2022). The mechanisms
of YAP signaling pathway mediating CAR-, PXR-, and PPARa-
induced hepatomegaly and liver regeneration are depicted in Fig. 3.
Activation of PXR and PPARa cannot induce liver enlargement in Yap

knockout mice, suggesting that PXR or PPARa activation-induced
hepatomegaly is YAP-dependent. However, CAR activation-induced
hepatomegaly is significantly suppressed but not totally abolished in
Yap knockout mice. Other factors such as CTNNB1, c-Myc, and mes-
enchymal epithelial transition factor receptor signaling are also involved
in the hepatomegaly induced by CAR. Further studies are required to
elucidate the diverse mechanisms of YAP in NR-induced liver enlarge-
ment. After activation of PXR, CAR, or PPARa by their typical ago-
nists, these NRs can interact with YAP and promote its nuclear
translocation. E domain of PPARa was identified to be essential for the
interaction with YAP. Whether the domain of PXR or CAR is neces-
sary for their interaction with YAP remains unclear, but it has been
included in our ongoing project. Further study is also required to mea-
sure the binding affinity between PXR, CAR, PPARa, and YAP and
elucidate the binding sites specifically. Recent studies showed that YAP
regulates gene transcription by forming liquid-liquid phase-separated
bodies and engaging in superenhancers (Franklin and Guan, 2020). It is
interesting to determine the function of NRs in the regulation of YAP
phase separation. Moreover, YAP is reported to be modulated by post-
translational modifications such as ubiquitination, phosphorylation,
acetylation, methylation, sumoylation, and O-GlcNAcylation, which
regulates its protein stability, transcriptional activity, and subcellular
localization at different stages (Yan et al., 2020). Whether PXR, CAR,
or PPARa regulates YAP activity via modulating its posttranslational
modifications remains to be further studied.
YAP is required in the hepatocyte proliferation modulated by Myc,

which is also one of the transcriptional targets of YAP (Choi et al.,
2018; Bisso et al., 2020). The overexpression of Myc can induce hepa-
tocellular carcinomas, and Myc plays a key role in the PPARa activa-
tion-induced liver cancer by upregulating the expression of miR-17-92
cluster and inducing the accelerated cell cycle progress and the

Fig. 3. YAP signaling pathway mediates CAR-, PXR-, or PPARa-induced hepatomegaly and liver regeneration.
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defection of tumor cell apoptosis (Qu et al., 2014). The upregulation of
the transcription of c-Myc mRNA might be modulated by CAR through
activating CTNNB1 and YAP signaling pathway (Shizu and Yoshinari,
2020). In addition, YAP is overactivated in various types of human can-
cers (Zender et al., 2006; Zhao et al., 2007; Steinhardt et al., 2008), and
prolonged activation of YAP promotes cancer progression in mice
(Moya and Halder, 2019), suggesting the potential risk of adverse side
effects such as carcinogenesis. Besides, activation of CAR and PPARa
has clear mitogenic effects, which is a typical factor to cause hepato-
megaly and promote tumorigenesis, at least in rodents (Locker, 2015;
Yamada et al., 2021). Thus, the strategies to activate YAP by NRs ago-
nists for regenerative therapy should be evaluated with caution.
Furthermore, crosstalk between NRs in the hepatomegaly was also

reported; for example, PPARa or CAR-induced hepatomegaly can be
enhanced by PXR agonists (Shizu et al., 2013). GADD45b, a transcrip-
tional coactivator that facilitates rapid liver growth in mice, can be signifi-
cantly induced by PXR or CAR activation and is associated with PXR or
CAR-induced hepatic proliferative response.
The species difference between human and rodent NRs is also noted.

The species difference between NRs in humans and rodents, such as
PXR and CAR, might be caused by the low homology of LBD (Yoshi-
nari, 2019). For example, rodent CAR may interact with other hepatocyte
proliferation-related proteins through the protein surface of LBD, whereas
human CAR may not interact with these proteins (Shizu and Yoshinari,
2020). The transcriptional interactions of PXR and YAP have no clear
species difference (Abe et al., 2019). Phenobarbital treatment of human
primary hepatocytes in vitro doesn’t cause hepatocyte proliferation and
DNA duplication, but phenobarbital treatment can induce the hepatocyte
proliferation in rats (Parzefall et al., 1991; Hirose et al., 2009; Soldatow
et al., 2016; Okuda et al., 2017). Furthermore, the species difference in
the CAR-mediated liver tumor formation may result from the protein-pro-
tein interaction between CAR and YAP, replicative DNA synthesis, and
hepatocyte proliferation (Yoshinari, 2019; Shizu and Yoshinari, 2020).
The PY motif of the protein surface of mouse CAR interacts with the
WW domain of YAP to activate YAP and induce hepatocyte prolifera-
tion, whereas the loss of the PY motif results in the lack of interaction in
human liver (Shizu et al., 2020). It has been shown that PPARa-depen-
dent rodent hepatocyte proliferation is absent in human liver, suggesting
that PPARa-induced hepatomegaly is also species dependent (Gonzalez
and Shah, 2008). PPARa agonist WY-14643 or fenofibrate-induced liver
enlargement in humans and rodents is different, which might be related
to distinct gene expression of PPARa and peroxisome proliferation
between humans and mice (Holden and Tugwood, 1999; Ye et al., 2003).
The species difference might also be associated with the PPARa target
gene binding, the response to ligand activation, and the functional differ-
ence of PPARa in mouse and human liver (Foreman et al., 2009). Thus,
whether and how these NRs agonists can promote liver regeneration in
humans still needs further investigation.
In summary, NRs exert critical effects on hepatomegaly and liver

regeneration, which provides clinical relevance for promoting liver
repair after liver injuries. Especially, NRs such as PXR, CAR, or
PPARa can be potential targets to rescue SFSS during liver transplanta-
tion. Many clinically used NRs agonists also possess the potential to be
used for promoting liver regeneration in clinics.
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