Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Characterizing and Quantifying Extrahepatic Metabolism of (−)-Δ9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, (±)-11-Hydroxy-Δ9-THC (11-OH-THC)

Aditya R. Kumar, Gabriela I. Patilea-Vrana, Olena Anoshchenko and Jashvant D. Unadkat
Drug Metabolism and Disposition June 2022, 50 (6) 734-740; DOI: https://doi.org/10.1124/dmd.122.000868
Aditya R. Kumar
Department of Pharmaceutics, University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gabriela I. Patilea-Vrana
Department of Pharmaceutics, University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Olena Anoshchenko
Department of Pharmaceutics, University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jashvant D. Unadkat
Department of Pharmaceutics, University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

(−)-Δ9-Tetrahydrocannabinol (THC) is the psychoactive constituent of cannabis, a drug recreationally consumed orally or by inhalation. Physiologically based pharmacokinetic (PBPK) modeling can be used to predict systemic and tissue exposure to THC and its psychoactive metabolite, (±)-11-hydroxy-Δ9-THC (11-OH-THC). To populate a THC/11-OH-THC PBPK model, we previously characterized the depletion clearance of THC (by CYP2C9) and 11-OH-THC (by UDP-glucuronosyltransferase (UGT), CYP3A, and CYP2C9) in adult human liver microsomes. Here we focused on quantifying extrahepatic depletion clearance of THC/11-OH-THC, important after oral (intestine) and inhalational (lung) consumption of THC as well as prenatal THC use (placenta and fetal liver). THC (500 nM) was metabolized in adult human intestinal microsomes (n = 3–5) by CYP2C9 [Vmax: 1.1 ± 0.38 nmol/min/mg; Michaelis-Menten constant (Km): 70 nM; intrinsic clearance (CLint): 15 ± 5.4 ml/min/mg; fraction metabolized (fm): 0.89 ± 0.31 at concentration ≪ 70 nM] and CYP3A (CLint: 2.0 ± 0.86 ml/min/mg; fm: 0.11 ± 0.050). 11-OH-THC (50 nM) was metabolized by CYP3A (CLint: 0.26 ± 0.058 ml/min/mg; fm: 0.51 ± 0.11) and UGT2B7 (CLint: 0.13 ± 0.027 ml/min/mg; fm: 0.25 ± 0.053). THC at 500 nM (CLint: 4.7 ± 0.22 ml/min/mg) and 11-OH-THC at 50 nM (CLint: 2.4 ± 0.13 ml/min/mg) were predominately (fm: 0.99 and 0.80, respectively) metabolized by CYP3A in human fetal liver microsomes (n = 3). However, we did not observe significant depletion of THC/11-OH-THC in adult lung, first trimester, second trimester, or term placentae microsomes. Using PBPK modeling and simulation, these data could be used in the future to predict systemic and tissue THC/11-OH-THC exposure in healthy and special populations.

SIGNIFICANCE STATEMENT This is the first characterization and quantification of (−)-Δ9-tetrahydrocannabinol (THC) and (±)-11-hydroxy-Δ9-THC (11-OH-THC) depletion clearance by cytochrome P450 and UDP-glucuronosyltransferase enzymes in extrahepatic human tissues: intestine, fetal liver, lung, and placenta. These data can be used to predict, through physiologically based pharmacokinetic modeling and simulation, systemic and tissue THC/11-OH-THC exposure after inhalational and oral THC use in both healthy and special populations (e.g., pregnant women).

Footnotes

    • Received February 10, 2022.
    • Accepted March 31, 2022.
  • This work was supported by National Institutes of Health National Institute on Drug Abuse [Grant P01 DA032507] and by National Institutes of Health National Institute of General Medical Sciences [Grant T32 GM007750] (to A.R.K.).

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • These data were previously presented in part as follows: Kumar AR (2021) Characterizing and quantifying extrahepatic metabolism of (-)-Δ9-tetrahydrocannabinol (THC) and its psychoactive metabolite, 11-OH-THC. 24th North American International Society for the Study of Xenobiotics (ISSX) Virtual Meeting; 2021 Sept 13–17; held virtually. International Society for the Study of Xenobiotics, Washington, DC.

  • dx.doi.org/10.1124/dmd.122.000868.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2022 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 50 (6)
Drug Metabolism and Disposition
Vol. 50, Issue 6
1 Jun 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterizing and Quantifying Extrahepatic Metabolism of (−)-Δ9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, (±)-11-Hydroxy-Δ9-THC (11-OH-THC)
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Kinetics of THC and 11-OH-THC Extrahepatic Metabolism

Aditya R. Kumar, Gabriela I. Patilea-Vrana, Olena Anoshchenko and Jashvant D. Unadkat
Drug Metabolism and Disposition June 1, 2022, 50 (6) 734-740; DOI: https://doi.org/10.1124/dmd.122.000868

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Kinetics of THC and 11-OH-THC Extrahepatic Metabolism

Aditya R. Kumar, Gabriela I. Patilea-Vrana, Olena Anoshchenko and Jashvant D. Unadkat
Drug Metabolism and Disposition June 1, 2022, 50 (6) 734-740; DOI: https://doi.org/10.1124/dmd.122.000868
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • ABBREVIATIONS
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human ADME Properties of Abrocitinib
  • MSCs Pharmacokinetics under liver diseases
  • In Vitro-In Vivo Extrapolation Using Empirical Scaling
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics