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ABSTRACT

The utilization of in vitro data to predict drug pharmacokinetics (PK)
in vivo has been a consistent practice in early drug discovery for dec-
ades. However, its success is hampered bymispredictions attributed
to uncharacterized biological phenomena/experimental artifacts. Pre-
dicted drug clearance (CL) from experimental data (i.e., intrinsic clear-
ance: CLint; fraction unbound in plasma: fu,p) is often systematically
underpredicted using the well-stirred model (WSM). The objective of
this study was to evaluate using empirical scalars in the WSM to cor-
rect for CL mispredictions. Drugs (N5 28) were used to generate nu-
merical scalars on CLint (a) and fu,p (b) to minimize the absolute
average fold error (AAFE) for CL predictions. These scalars were vali-
dated using an additional dataset (N5 28 drugs) and applied to a non-
redundant AstraZeneca (AZ) dataset available in the literature (N 5

117 drugs) for a total of 173 compounds. CL predictions using the
WSM were improved for most compounds using an a value of 3.66
(~64% < 2-fold) compared with no scaling (~46% < 2-fold). Similarly,
using a b value of 0.55 or combination of a and b scalars (values of
1.74 and 0.66, respectively) resulted in a similar improvement in

predictions (~64% < 2-fold and ~65% < 2-fold, respectively). For
highly bound compounds (fu,p # 0.01), AAFE was substantially re-
duced across all scaling methods. Using the b scalar alone or a com-
bination of a and b appeared optimal and produced larger magnitude
corrections for highly bound compounds. Some drugs are still dis-
proportionally mispredicted; however, the improvements in predic-
tion error and simplicity of applying these scalars suggest its utility
for early-stage CL predictions.

SIGNIFICANCE STATEMENT

In early drug discovery, prediction of human clearance using in vitro
experimental data plays an essential role in triaging compounds prior
to in vivo studies. These predictions have been systematically under-
estimated. Here we introduce empirical scalars calibrated on the ex-
tent of plasma protein binding that appear to improve clearance
predictions across multiple datasets. This approach can be used in
early phases of drug discovery prior to the availability of preclinical
data for early quantitative predictions of human clearance.

Introduction

The utilization of in vitro data to predict in vivo pharmacokinetic pa-
rameters is widely adopted, and many groups have evaluated and devel-
oped approaches to predict in vivo clearance. These approaches use
in vitro data such as intrinsic clearance (CLint), free fraction of drug in
plasma (fu,p), and nonspecific binding in the in vitro matrices (fu,inc), as
well as measures of drug properties such as lipophilicity (logD,pH57.4)
and ionization class (anionic, basic, neutral, or zwitterion) (Hallifax

et al., 2010). Attempts to use these data to improve in vitro-in vivo ex-
trapolation (IVIVE) through different scaling approaches have yielded
varying degrees of success (Grime and Riley, 2006; Berezhkovskiy,
2011; Ring et al., 2011; Hallifax and Houston, 2012). Recently, re-
searchers have expanded on these approaches to assess prediction accu-
racy and have evaluated the advantages and disadvantages among the
various methods (Lombardo et al., 2014, 2018; Benet and Sodhi, 2020;
Umehara et al., 2020; Poulin and Haddad, 2021).
Among the physiologically relevant liver models for CL predic-

tions, the well-stirred model (WSM) is broadly adopted (Pang and
Rowland, 1977a,b). The perquisite of the WSM is that the rate of en-
zyme-mediated elimination is slower compared with both the rate of
distribution and kinetics of plasma protein binding and assumes that
the unbound drug concentration in plasma and in the hepatic aqueous
environment reach instantaneous equilibrium and undergo linear
kinetics.
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clearance; CYP450, cytochrome P450; FDA, US Food and Drug Administration; fu,inc, fraction unbound in incubation; fu,mic, fraction unbound in
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LM, liver microsome; logD,pH57.4, lipophilicity; PK, pharmacokinetics; R2, coefficient of determination; RED, rapid equilibrium dialysis; t1/2, half-
life; WSM, well-stirred model.
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In its simplest form, the WSM can be expressed as:

CLhep, b ¼ Qhep � CLint
Qhep þ CLint

(1)

in which CLhep,b is the hepatic blood CL, Qhep is the hepatic blood
flow, and CLint is the intrinsic clearance of the blood perfused liver.
When assuming that the concentration in blood cells is comparable to

plasma, CLhep,b equates to hepatic plasma clearance (CLhep). Further-
more, as only the free drug is assumed to be metabolized, the equation
can be rearranged as:

CLhep ¼ Qhep � fu, p � CLint, u
Qhep þ fu, p � CLint, uð Þ (2)

in which CLhep is the hepatic plasma clearance, fu,p is the fraction un-
bound in plasma, and CLint,u is the intrinsic clearance of the free drug.
“Bottom-up” approaches to CLhep prediction aim to describe CLint,u,

starting from in vitro measurements in systems such as liver micro-
somes or hepatocytes and correcting for unbound fraction. Although
this approach is useful, its quantitative accuracy is still somewhat lim-
ited and the underlying mechanisms responsible for the systematically
observed underpredictions are not fully understood. Although there is a
lack of consensus as to the identity and magnitude of each reason lead-
ing to poor CL predictions, the tendency to often underpredict CLint
could be rationalized as a loss of activity in the hepatocyte cultures
compared with in vivo systems or by imprecise estimation of the appro-
priate physiologic scalars (Bowman and Benet, 2019). These possibili-
ties suggest that a constant CLint multiplier could be derived to improve
in vitro-in vivo correlations. This practical approach was shown to
considerably improve IVIVE by AstraZeneca (Williamson et al.,
2020). Internally at Genentech, we have observed a similar degree of
improvement for clinical and preclinical predictions using the same ap-
proach; disappointingly, we have observed that in vitro estimates of
in vivo CLint were still suboptimal for highly bound compounds (also
witnessed in the AstraZeneca dataset).
Many recent reports have emphasized a potential role of plasma pro-

teins in hepatic drug uptake, producing an abundance of in vivo and
in vitro data supporting the notion that hepatic uptake and ultimately
CLhep increase with increasing binding to plasma proteins, specifically
albumin (Poulin and Haddad, 2015; Bowman et al., 2019; Chang et al.,
2019; Kim et al., 2019; Francis et al., 2021). In particular, Francis et al.
(2021) used data collected from 26 compounds in rat and human hepa-
tocytes to derive an empirical equation to account for the impact of
plasma protein on CLint,u,in vitro in an effort to improve IVIVE-based CL
predictions.
Although the mechanism of such phenomena is still unclear, this

could potentially arise from a transporter-albumin interaction or could
be unrelated to transporter activity. Because of the overlapping chemical
space between hepatic uptake transporters and albumin substrates (i.e.,
lipophilic anionic compounds), finding chemical probes to investigate
each hypothesis has proven challenging. The fact that plasma protein-
mediated hepatic uptake is currently unaccounted for in current models
of hepatic clearance may support the derivation of a CLint scalar based
on fu,p magnitude.
In this study, a trend analysis approach was used to derive two sca-

lars, “a” for CLint and “b” for fu,p, from a training set of compounds
with human intravenous PK data. Here we report the impact of includ-
ing different scalars in the WSM and subsequent improvements in the
prediction of human CLhep for 173 compounds.

Materials and Methods

Human CL and Physiochemical Properties Dataset. The internal Genen-
tech (GNE) dataset was generated by collecting plasma protein binding (fu,p),
fraction unbound in microsomes (fu,mic), and in vitro intrinsic clearance (CLint)
parameters for 56 drugs. pKa and ionization class were calculated using the soft-
ware MoKa (Molecular Discovery: https://www.moldiscovery.com/software/
moka/). The base pKa model was augmented by including Roche and GNE com-
pounds in the training set. Intravenous CL data were collected primarily from
Lombardo et al. (2018) but also from the DrugBank database (https://www.
drugbank.ca/). The definitions for primary route of elimination and experimental
logD,pH57.4 were also retrieved from various sources: Lombardo et al. (2014),
DrugBank, and Benet et al. (2011). When experimental logD,pH57.4 was not
available, a GNE internal machine learning model was used for prediction. For
compounds for which the route of elimination in human was found to be meta-
bolic, further investigation concerning major metabolizing enzymes was per-
formed using DrugBank; when the information was not available in DrugBank,
individual searches were performed using alternative resources: Kyoto Encyclo-
pedia of Genes and Genomes (KEGG: https://www.genome.jp/kegg/), US Food
and Drug Administration (FDA: https://www.fda.gov/), and literature references
(Laurenzana and Owens, 1997; Shet et al., 1997; Moridani et al., 2001; Li et al.,
2002; McDonald and Rettie, 2007; Olkkola and Ahonen, 2008; He et al., 2009;
Jornil et al., 2010; Yu et al., 2014; Salerno et al., 2017; MacLauchlin et al.,
2018; Kogame et al., 2019). Human CL endpoints were capped to a liver blood
flow value of 20.7 ml/min/kg; when mixed mechanisms of elimination were re-
ported, the total CL was normalized according to the fraction of hepatic metabo-
lism (moxifloxacin and zidovudine).

In addition, a total of 78 compounds for which the major route of elimination
in humans is mediated by cytochrome P450 (CYP450; N 5 51), phase II metab-
olism (N 5 9), renal elimination (N 5 15), or biliary elimination (N 5 3) were
included in a separate dataset to explore the relationship between elimination
route and physiochemical properties. For six nonmetabolically eliminated com-
pounds for which experimental fu,mic was lacking, values were predicted using
GNE’s in-house internal machine learning model. Four of the 60 metabolically
eliminated compounds are not in the final dataset due to significant extra hepatic
elimination (zidovudine, moxifloxacin), nonlinear pharmacokinetics (tacrine),
and significant disconnects between the plasma protein binding value reported in
literature compared with the ones reported in house (Gammans et al., 1986; Mad-
den et al., 1995; Moise et al., 2000).

External Validation Set. The data presented in the recent publication from
AstraZeneca (AZ) scientists were used as an external validation set (Williamson
et al., 2020). Compounds were included if the human CL value could be re-
trieved from Lombardo et al. (2018). Compounds that were already present in
the GNE dataset were excluded to avoid duplication. It is important to highlight
that in the AZ dataset, CLint,u of the free drug in hepatocytes is provided as a sin-
gle value and not as a combination of apparent CLint and fu,mic, whereas in the
GNE dataset, all of the fu,mic values for metabolically eliminated compounds are
experimentally determined and presented separately.

Materials. The 56 compounds in the GNE dataset were obtained from com-
mercial sources (Sigma-Aldrich, Cayman Chemical, Toronto Research Chemi-
cals, etc.) via the internal compound management bank. Compounds were
prepared as 10 mM or 1 mM stock concentrations in dimethyl sulfoxide
(DMSO). Pooled male and female human (N 5 10) hepatocytes were purchased
from BioIVT (Westbury, NY); high-performance liquid chromatography
(HPLC)-grade water was from J.T. Baker (Center Valley, PA); HPLC-grade ace-
tonitrile was from EMD Millipore (Billerica, MA). Dulbecco’s Modified Eagle
Medium (DMEM) and rapid equilibrium dialysis (RED) devices with inserts
were obtained from Thermo Fisher Scientific Inc. (Rockford, IL). Pooled
(N $ 10) male and female human liver microsomes were purchased from Corn-
ing (Woburn, MA). An Allegra × 12R centrifuge used in these studies was pur-
chased from Beckman Coulter (Brea, CA). All other chemicals and reagents
were of analytical grade and were obtained from Sigma-Aldrich (St. Louis, MO)
unless otherwise specified.

Hepatocyte Stability. Metabolic hepatocyte stability was determined in
house using cryopreserved primary hepatocytes. Drug and hepatocyte dilutions
were performed in DMEM with 1 lM drug concentration (final DMSO concen-
tration 0.1% v/v) and 0.5 million cells ml�1 under 37�C with 5% CO2. A master
reaction plate containing drug and hepatocyte reaction mixture was prepared and
aliquots were removed and quenched with acetonitrile and internal standard (IS)

1054 Jones et al.
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at 0, 1, 2, and 3 hours. The samples were centrifuged at 3700 rpm for 15 mi-
nutes, and the supernatant was diluted equally with water before liquid chroma-
tography–tandem mass spectrometry (LC-MS/MS) analysis. If irregular time
course was observed using the above protocol (e.g., increase in drug concentra-
tion or variability over time), a follow-up experiment was performed using a dif-
ferent quench/crash protocol where individual, total reactions were crashed for
each time point (crash-in) (Winiwarter et al., 2019) using quadruplicate reaction
plates containing the drug and hepatocyte mixture. Out of the 18 compounds for
which both protocols were available, only two produced qualitatively different
results (>3-fold change). These discrepancies were attributed to the high degree
of nonspecific binding to the incubation plate, which resulted in high variability
or increase in analyte concentrations over time, which was diminished upon us-
ing the crash-in method. Acetonitrile with IS was added to the separate reaction
mixtures at 0, 1, 2, and 3 hours. The samples were centrifuged at 3700 rpm for
15 minutes, and the supernatant was diluted equally with water before LC-MS/
MS analysis.

Microsomal Incubational Binding. Liver microsome (LM) binding experi-
ments were performed in triplicate using a RED Device. LM stock solutions
were diluted to 0.5 mg protein/ml with phosphate buffer saline (PBS: 133 mM
potassium phosphate, 150 mM sodium chloride). Drugs were diluted to 1 lM in
the LM solution. Subsequently, 500 ll of PBS was added to the receiver wells
of the RED device and 300 ll of the drug-LM mixtures was added to the donor
wells of the RED device. The RED device was sealed using a gas-permeable
membrane and then placed in a shaking incubator (450 rpm; VWR Symphony)
at 37�C with 5% CO2. After 6 hours, aliquots from the receiver and donor wells
of the RED device were added to acetonitrile with IS and matrix equalized. The
samples were centrifuged at 3700 rpm for 15 minutes, and the supernatant was
diluted equally with water before LC-MS/MS analysis.

Plasma Protein Binding. Plasma protein binding experiments were per-
formed in triplicate using a single-use RED device. Plasma was adjusted to pH
7.4 with 0.5 M phosphoric acid. Drugs were diluted to 5 lM in plasma. Five
hundred microliters of PBS was added to the receiver wells of the RED device,
and 300 ll of the drug-plasma mixtures was added to the donor wells of the
RED device. The RED device was sealed using a gas-permeable membrane and
then placed in a shaking incubator (450 rpm; VWR SymphonyTM) at 37�C with
5% CO2. After 6 or 24 hours, buffer and plasma aliquots from the receiver and
donor wells of the RED device were matrix equalized with an equal volume of
plasma or buffer, and ice-cold acetonitrile was added with IS. The samples were
centrifuged at 3700 rpm for 15 minutes, and the supernatant was diluted equally
with water before LC-MS/MS analysis.

LC-MS/MS Analysis. LC-MS/MS analysis was performed using a 55001
QTRAP mass spectrometer coupled with a TurboIonSpray ESI ion source (AB
SCIEX, Redwood City, CA) and Agilent 1200 series LC (Santa Clara, CA).
Chromatographic separation of all analytes was achieved using a Kinetex C18
column (50 × 2.0 mm, 80 Å, 4 lm particle size) (Torrance, CA) along with mo-
bile phase A consisting of 0.1% formic acid in HPLC-grade water and mobile
phase B consisting of 0.1% formic acid in acetonitrile. A generic LC gradient
was used for all analytes where the flow rate was set to 0.5 ml/min, the run time
to 3.5 minutes, and the LC gradient as follows: 2% B for the first 1.5 minutes,
ramped up to 40% B from 1.5 to 2.0 minutes, remained constant at 98% B from
2.0 to 3.0 minutes, and then decreased to 2% B from 3.0 to 3.5 minutes.

Data Analysis. For the hepatocyte stability experiments, half-life (t1/2) and
CLint were determined for each compound after calculating the slope of the natu-
ral log plot of percent parent remaining profiles over time using the mass spec-
trometer (MS) peak area ratios normalized to initial time point peak area (t 5 0
min). t1/2 was calculated using the following equation:

t1=2 minð Þ ¼ ln 2ð Þ
�Slope

(3)

CLint was subsequently calculated using the scaling factors for hepatocytes to
whole body intrinsic clearance (ml/min/kg):

CLint mL=min=kgð Þ ¼ ln 2ð Þ � V=P
t1=2

� 1 mL
1000 lL

� million hepatocytes
gram liver

� gram liver
kg body weight

(4)

V/P is defined as the incubation volume divided by the number of hepatocytes
used in the incubation (ll/x 106 cells), million hepatocytes/gram liver is 135 ×

106 cells/g liver, and gram liver/kg body weight is 25.7 g liver/kg body weight
based on previously published literature data. For the AZ dataset, these values
were originally reported as ll/min/x 106 cells and were scaled using the same
physiologic scalars used internally for scaling human hepatocyte stability studies
to calculate whole body intrinsic clearance (ml/min/kg). CLint,u values were cal-
culated using reported unbound fraction in the incubation (fu,inc) for each com-
pound in the AZ dataset (Williamson et al., 2020).

Fraction unbound in plasma (fu,p) and microsomes (fu,mic) were calculated us-
ing peak area ratios between the analyte and the IS from the receiver and the do-
nor chambers using the following equation:

fu ¼ analyte peak area
IS peak area

� �
receiver

�
analyte peak area

IS peak area

� �
donor

(5)

Derivation of Scalars for CLint and fu,p. The GNE dataset was divided
into a training set (N 5 28) and a validation set (N 5 28) for the scalar defini-
tion. The subset sampling was performed by alternating compound assignment
based on a decreasing value for their fu,p. An AZ dataset was used as an addi-
tional validation set (N 5 117 compounds).

Three approaches to offset derivation were attempted, starting from the fol-
lowing formula:

CLhep ¼ Qhep � CLint, u � a � fu, pb
Qhep þ CLint, u � a � fu, pb

a > 1, b ¼ 1 Method 1
a ¼ 1, b < 1 Method 2
a > 1, b < 1 Method 3

8<
: (6)

The CLint offset method 1 is used to derive the scalar a while setting the sca-
lar b equal to 1, method 2 is used to derive the scalar b while setting the scalar a
equal to 1, and lastly method 3 is used to derive both the a and b scalars simulta-
neously. All three methods assume that the main reasons for in vitro to in vivo
disconnects are consistent across hepatic-metabolized drugs. In addition, the ap-
plication of an exponential b scalar on fu,p could also be mathematically rear-
ranged to yield a fu,p-dependent scalar on the product of CLint,u·fu,p [i.e.,
fu,p

b–1·(CLint,u·fu,p)], analogous to the approach defined by Francis et al. (2021) in
which CLint,u is scaled by a factor of plasma protein binding. A simulation be-
tween these two approaches is presented in Supplemental Fig. 3.

These assumptions ignore the potential activity of uptake transporters for prac-
tical reasons, not scientific ones. The impact of transporters on newer iterations
of the WSM are discussed elsewhere (Endres et al., 2009; Pang et al., 2019).
Blood to plasma partitioning (BPP) is also an important parameter within the
WSM equation. In particular, BPP can greatly vary the predicted hepatic CL for
high CLint compounds; for compounds that exhibit low CLint,u and/or fu,p, the he-
patic CL predicted by the WSM can be approximated by CLint,u·fu,p, and is mini-
mally affected by the BPP value. Although it is acknowledged that in some
cases the availability of BPP data could significantly improve predictions, the im-
proved accuracy observed for high CL compounds suggests that availability of
measured BPP data would not change the general conclusions from this study.
Therefore, for the purpose of this analysis, BPP was assumed to be 1.

The scalars were derived using a grid search across parameter values (a rang-
ing from 1 to 5 with a step of 0.01, b ranging from 0 to 1 with a step of 0.01).
The optimal values were selected based on the minimization of average fold er-
ror (AFE) and absolute average fold error (AAFE) in the prediction of human
clearance CLpred; AAFE was defined as follows:

AFE ¼ 10
1
NSlog

CLpred
CLobs

� �
(7)

AAFE ¼ 10
1
NS log

CLpred
CLobs

� ���� ���
(8)

The grid search was performed using RStudio, and the datasets are provided
in the Supplemental Material. The values were derived based on the GNE train-
ing set of 28 compounds, whereas the whole GNE dataset (N 5 56) and the AZ
(N 5 117) dataset combined (N 5 173) were used to assess the generalizability
of the approach.

Due to the higher number of non–highly bound compounds (fu,p > 0.01) and
due to the inherent differences between the two approaches being defined by
variable binding characteristics, the analysis of data was stratified for high
(fu,p # 0.01) versus low/moderate binders (fu,p > 0.01); after the validation in the
external GNE set, the datasets were combined to increase the representation of
highly bound compounds. The three methods were compared with the WSM
with no offset scalars (a and b 5 1).

In Vitro-In Vivo Extrapolation Using Empirical Scaling 1055
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Results

Properties of the Dataset. The physiochemical properties of the
GNE dataset (N 5 56) and nonredundant compounds (N 5 117) in the
AZ dataset (Williamson et al., 2020) were investigated. The full com-
pound list and parameters used for CL predictions are available in
Supplemental Tables 1 and 2. Figures 1 and 2 display the ion class, ex-
tent of plasma protein binding, and major route of elimination for the
GNE and AZ datasets, respectively. The distribution of compounds
across physiochemical space was relatively consistent across the two
datasets. In terms of fu,p, the GNE dataset had 11 compounds that were
highly bound (fu,p # 0.01) and the AZ dataset had 15 highly bound
compounds (fu,p # 0.01). All of the compounds in the GNE dataset
were cleared primarily via phase I and II metabolic elimination (87.5%
and 12.5%, respectively). Compounds in the AZ dataset were also pri-
marily cleared via phase I (�79.5%) and phase II (�7.7%) metabolism;
in addition, 15 compounds were cleared via alternative or unknown
routes of elimination (�12.8%).
A summary of the reported observed human plasma clearances

(CLobs) is depicted in Figure 3, with medians of 4.7 ml/min/kg and
6.1 ml/min/kg for the GNE and AZ datasets, respectively. A statistical
comparison between all individually reported mean observed CL values
for both datasets (GNE and AZ) was performed to assess whether they
were statistically different and whether there was bias for higher or
lower reported CL values from each dataset. There were no statistically
significant differences between the mean observed CL values for

compounds used in both datasets (data not shown; two-way unpaired t
test and Mann-Whitney test, P > 0.05). Supplemental Figure 1 shows
the CLint,u corrected for microsomal binding versus the logD,pH57.4 val-
ues for each compound stratified by mechanism of elimination. Incuba-
tional binding (fu,inc) was assumed to be comparable between human
LM and human hepatocytes based on previously published data (Chen
et al., 2017; Winiwarter et al., 2019). Although ionization class tended
to be evenly distributed across the respective range of CLint,u values, it
was apparent that for compounds primarily undergoing CYP450-medi-
ated elimination, there were increases in elimination rate (CLint,u) with
an increase in lipophilicity (logD,pH57.4) (Benet et al., 2011; Varma
et al., 2015). In the �0.5–1 logD,pH57.4 range, a CLint,u greater than 3
ml/min/kg predicted compounds eliminated in the liver with no excep-
tion (all via hepatic metabolism, with the exception of one compound
via biliary elimination), whereas in the same logD,pH57.4 range, it was
visually apparent that renal elimination was as likely as metabolic elimi-
nation for compounds with in vitro metabolic turnover of under 3 ml/
min/kg based on this dataset (three compounds renally eliminated vs.
five metabolically eliminated). Values of logD,pH57.4 < �0.5 identified re-
nally eliminated compounds in all cases except for one biliary-eliminated
outlier; similarly, values of logD,pH57.4 > 1 identified all metabolically
eliminated compounds in all cases except for one biliary-eliminated
outlier.
CL Predictions Using WSM Scalars. Using independent datasets

from two different companies within the pharmaceutical industry, differ-
ent empirical scalars were derived to correct for mispredicted com-
pounds using the WSM for compounds with a range of physiochemical

Fig. 1. Physiochemical and
absorption, distribution, metab-
olism, and excretion (ADME)
properties of the GNE dataset
(N 5 56). (A) Ion class; (B)
extent of plasma protein bind-
ing (low: fu,p > 0.10, moder-
ate: 0.01 < fu,p # 0.10, high:
fu,p # 0.01); and (C) major
route of elimination.
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properties. These scalars were derived using a grid search in RStudio
aimed at minimizing AFE and AAFE for a set of compounds randomly
selected from the GNE dataset (GNE training, N 5 28). The remaining
GNE compounds in the dataset (GNE validation, N 5 28) were used to
validate each modeling method for our internally collected data, and
each modeling scheme was subsequently applied to all of the com-
pounds for each method (GNE 1 AZ datasets, N 5 173). Prior to fit-
ting these scalars, each dataset was used to predict total clearance
without the use of any empirical scalars by using the well-stirred model

(a 5 1, b 5 1). Figure 4 depicts the AFE for each compound for the
GNE training, GNE validation, and combined datasets with no scalars
applied. The majority of compounds were underpredicted when compar-
ing CLpred to CLobs for each of the three datasets. Table 1 provides a
summary of the fraction of compounds that were within/beyond 2-fold
AAFE and coefficients of determination (R2) for each dataset and
modeling method, and these are further stratified by degree of plasma
protein binding in Table 2. Additionally, the correlation plots of CLpred

versus CLobs of the GNE1 AZ datasets for each of the scaling methods
are provided in Supplemental Fig. 2. The percentage of compounds that
were less than 2-fold AAFE CLpred values for the GNE training, GNE
validation, and GNE1 AZ datasets were 32.1%, 53.6%, and 45.7%, re-
spectively. Subsequently, using the GNE training dataset and each of
the modeling methods, a and b scalar values were individually and
simultaneously fitted using the approaches outlined in the methods.
Figure 5 shows the different datasets after fitting the offset a scalar
(method 1) and fixing b to 1. After performing the analysis, an offset a
value of 3.66 was obtained to minimize the AAFE for the GNE training
dataset; this was consistent with previous reports (Williamson et al.,
2020). As expected, the CLpred values were increased compared with the
model predictions using no scalars due to the product of a�CLint,u·fu,p,
where a > 1, which improved the prediction for a majority of the com-
pounds that were originally underpredicted. The percentage of com-
pounds that were less than 2-fold AAFE CLpred values for the GNE
training, GNE validation, and GNE1 AZ datasets were substantially re-
duced compared with the model prediction with no scalars (60.7%,
71.4%, and 63.6%, respectively) (Table 1). Using method 2, where a was

Fig. 2. Physiochemical and
ADME properties of the
AZ dataset (N 5 117).
(A) Ion class; (B) extent
of plasma protein binding
(low: fu,p > 0.10, moderate:
0.01 < fu,p # 0.10, high:
fu,p # 0.01); and (C) ma-
jor route of elimination.

Fig. 3. Observed human plasma CL of GNE and AZ datasets. Data are plotted as
box-whisker plots representing the median and 95% confidence intervals (blue).
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fixed to 1 and b was fitted using GNE training dataset, a b value of 0.55
was determined. Figure 6 demonstrates changes in prediction accuracy
for the GNE and AZ datasets. Similar to the a scalar, as expected the
CLpred values were increased compared with the model predictions using
no scalars due to the product of CLint,u·fu,p

b, where fu,p < 1, which im-
proved the prediction for a majority of the compounds that were
originally underpredicted. The percentage of compounds that were less
than 2-fold AAFE CLpred values for the GNE training, GNE validation,
and GNE 1 AZ datasets were also reduced compared with the model
prediction with no scalars (60.7%, 75.0%, and 64.7%, respectively)
(Table 1). Comparing method 1 to method 2, it is apparent that the CLpred
values for the highly bound compounds were improved for all three data-
sets when using the exponential b scalar in contrast to the coefficient a
scalar. Additionally, the b scalar derived using this fitting approach can

also be mathematically rearranged to yield a plasma protein binding-de-
pendent CLint,u scaling factor equivalent to fu,p

b�1·(CLint,u·fu,p). Where
b5 0.55 using method 2, this scaling factor simplifies to fu,p

�0.45, which
produced changes in CLpred within 2-fold of the scaling factor derived by
Francis et al. (2021) in the range of fu,p 0–0.0001 (Supplemental Fig. 3).
For method 3, when a and b are fit simultaneously to correct for pre-

diction error the overall predictions do not substantially improve Fig. 7
compared with methods 1 and 2. Using this simultaneously fitting
method, an a value of 1.74 and a b value of 0.66 were obtained in
GNE training dataset. The percentage of compounds that were less than
2-fold AAFE CLpred values for the GNE training, GNE validation, and
GNE 1 AZ datasets were 60.7%, 75.0%, and 64.2%, respectively.
Figure 8 summarizes the AAFE values across all of the scaling methods
implemented in this analysis.

Fig. 4. Accuracy (AFE) of human
clearance prediction using the well-
stirred model vs. fu,p using no scalars
(essentially, a and b both 5 1). The
dashed vertical line differentiates the
highly bound compounds (fu,p # 0.01)
from the non–highly bound com-
pounds (fu,p > 0.01). The horizontal
dashed, dotted, and solid lines repre-
sent the 3-fold error, 2-fold error, and
line of unity, respectively. Compounds
are color coded based on mechanism
of elimination (red: CYP450 metabo-
lism; green: phase II metabolism; blue:
other; purple: unknown).

TABLE 1

In vitro to in vivo human CL prediction accuracy (AAFE) for different scaling methods applied to the well-stirred model, percentages of dataset where predicted CL
was < or >2-fold of observed clearance, and calculated coefficients of determination (R2)

Dataset Accuracy
No Scalars

(a 5 1, b 5 1)
Method 1

(a 5 3.66, b 5 1)
Method 2

(a 5 1, b 5 0.55)
Method 3

(a 5 1.74, b 5 0.66)

GNE training (N 5 28) <2-fold (%) 32.1 60.7 60.7 60.7
>2-fold (%) 67.9 39.3 39.3 39.3

AAFE 3.35 2.20 2.02 1.98
R2 0.70 0.74 0.64 0.69

GNE validation (N 5 28) <2-fold (%) 53.6 71.4 75.0 75.0
>2-fold (%) 46.4 28.6 25.0 25.0

AAFE 2.44 1.94 1.82 1.88
R2 0.63 0.60 0.66 0.68

GNE 1 AZ (N 5 173) <2-fold (%) 45.7 63.6 64.7 64.2
>2-fold (%) 54.3 36.4 35.3 35.8

AAFE 2.54 1.95 1.96 1.94
R2 0.40 0.46 0.33 0.39
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Discussion

The utilization of mechanistic or empirical scalars for the prediction
of in vivo hepatic clearance from in vitro data are well established and
are still being perfected with a variety of methods aimed at improving
predictions using the WSM (Grime and Riley, 2006; Berezhkovskiy,
2011; Ring et al., 2011; Hallifax and Houston, 2012). The “holy grail”
of the field’s collective efforts has been to gain a mechanistic under-
standing of the observed IVIVE disconnects (typically an underestima-
tion of in vivo clearance) and a prospective approach of predicting both
preclinical and human clearance with accuracy and precision. With an
eye on this goal, yet pragmatism in mind to drive drug discovery, we
present an empirical approach deriving two scalars for the WSM. The
first scalar, “a,” is a coefficient CLint scalar, which may be rationalized
as accounting for loss of activity in the in vitro system relative to
in vivo and/or as accounting for miscalculation of the physiologic scalar
values used to translate in vitro half-life (t1/2) to apparent CLint. The sec-
ond scaler, “b,” for fu,p may be rationalized as accounting for hepatic

uptake mediated by plasma proteins not present in vitro and/or inaccura-
cies in the determination of accurate free fraction in vitro.
Recent research suggests that larger in vitro-in vivo disconnects may

be observed for compounds that are highly bound to albumin (Poulin
and Haddad, 2015; Bowman et al., 2019; Kim et al., 2019; Francis
et al., 2021). Attempts have been made to mechanistically account for
these disconnects to improve clearance prediction accuracy. For exam-
ple, the ability of plasma protein, particularly albumin, to enhance the
uptake of highly bound compounds or organic anion transporting poly-
peptide (OATP) transporter substrates has been debated among re-
searchers (often termed albumin-facilitated uptake) (Bowman et al.,
2019, 2020, 2021; Chang et al., 2019; Kim et al., 2019; Liang et al.,
2020; Bi et al., 2021). Da-Silva et al. (2018) evaluated the impact of
scaling three different in vitro hepatocyte-based assays (i.e., suspension,
plated, and micropatterned coculture), correcting for unbound fraction
as well as adjusted fu,p (fu,p,adjusted) to account for the presence of albu-
min-facilitated uptake phenomenon. In this case, the fu,p,adjusted equation

TABLE 2

In vitro to in vivo human CL prediction accuracy (AAFE) for different scalar methods applied to the well-stirred model stratified by binding class

Dataset Binding Class N
No Scalars

(a 5 1, b 5 1)
Method 1

(a 5 3.66, b 5 1)
Method 2

(a 5 1, b 5 0.55)
Method 3

(a 5 1.74, b 5 0.66)

GNE training (N 5 28) All 28 3.35 2.20 2.02 1.98
fu,p # 0.01 6 7.86 3.42 2.01 2.13
fu,p > 0.01 22 2.65 1.95 2.03 1.94

GNE validation (N 5 28) All 28 2.44 1.94 1.82 1.88
fu,p # 0.01 5 5.48 2.07 1.85 1.82
fu,p > 0.01 23 2.05 1.91 1.81 1.90

GNE 1 AZ (N 5 173) All 173 2.54 1.95 1.96 1.94
fu,p # 0.01 26 5.63 2.71 2.41 2.44
fu,p > 0.01 147 2.21 1.84 1.89 1.86

Fig. 5. Accuracy (AFE) of human clear-
ance prediction using the well-stirred
model vs. fu,p using method 1 (a 5 3.66,
b5 1). The dashed vertical line differen-
tiates the highly bound compounds
(fu,p # 0.01) from the non–highly bound
compounds (fu,p > 0.01). The horizontal
dashed, dotted, and solid lines represent
the 3-fold error, 2-fold error, and line of
unity, respectively. Compounds are color
coded based on mechanism of elimina-
tion (red: CYP450 metabolism; green:
phase II metabolism; blue: other; purple:
unknown).
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aims to correct the experimentally determined fu,p values for drugs to
account for the uptake of drug in cells for both bound and unbound
forms based on albumin-facilitated uptake and pH gradient effect (Pou-
lin and Haddad, 2015). Using this method, the uptake rate as a function

of plasma protein binding was able to dramatically improve prediction
accuracy compared with conventional fu,p-corrected predictions (AAFE
of 1.4 vs. 7.4) for a small number of compounds. These corrections in-
crease the fu,p,adjusted values in comparison with original fu,p values,

Fig. 6. Accuracy (AFE) of human
clearance prediction using the well-
stirred model vs. fu,p using method 2
(a 5 1, b 5 0.55). The dashed verti-
cal line differentiates the highly
bound compounds (fu,p # 0.01) from
the non–highly bound compounds
(fu,p > 0.01). The horizontal dashed,
dotted, and solid lines represent the
3-fold error, 2-fold error, and line of
unity, respectively. Compounds are
color coded based on mechanism of
elimination (red: CYP450 metabo-
lism; green: phase II metabolism;
blue: other; purple: unknown).

Fig. 7. Accuracy (AFE) of human
clearance prediction using the well-
stirred model vs. fu,p using method 3
(a 5 1.74, b 5 0.66). The dashed ver-
tical line differentiates the highly
bound compounds (fu,p # 0.01) from
the non–highly bound compounds (fu,p
> 0.01). The horizontal dashed, dotted,
and solid lines represent the 3-fold er-
ror, 2-fold error, and line of unity, re-
spectively. Compounds are color
coded based on mechanism of elimina-
tion (red: CYP450 metabolism; green:
phase II metabolism; blue: other; pur-
ple: unknown).
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which are not linearly proportional to binding isotherms. The empirical
scalars derived in this study are meant to address systematic underpre-
dictions typically observed when applying the WSM. Because these
scalars do not directly account for transporter activity, additional correc-
tions might be needed for compounds for which hepatic uptake is pro-
moted or impaired due to transporter activity. However, in recognizing
the dominance of fu,p on CL prediction accuracy, in this current work
we take a simplified approach and incorporate an exponential b scalar
meant to adjust CLint,u values in a mechanism-agnostic fashion and
independent of ionization state (differentiating from the reported
fu,p,adjusted scaling approach). In addition to the advancement in CL IVIVE
discussed, Supplemental Fig. 1 highlights how in vitro data (CLint,u and
measured lipophilicity logD,pH57.4) can also be used to diagnose the route
of elimination with almost no exception outside of the�0.5–1 interval, in
agreement with previous findings (Benet et al., 2011).
It is evident that all of the methods explored in this study significantly

improve prediction accuracy compared with using the WSM without any
scalars. The differentiation between the three methods is harder to gauge
due to the relatively low number of highly bound compounds for which
human intravenous clearance data are available. Although the incorpora-
tion of scalars dependent on the magnitude of plasma protein binding ap-
pears promising, the available dataset is not sufficient to draw definitive
conclusions about the superiority of one method over the others.
To highlight one outlier, mifepristone (fu,p 5 0.0032) was predicted

to be within 3-fold of the CLobs when not accounting for any scalars
(AFE: �2.3); when applying methods 1–3, mifepristone CL was

substantially overpredicted (method 1 using a-scalar AFE: �7.4;
method 2 AFE: �18.2) and underpredicted (method 3 AFE: �0.06).
Mifepristone is metabolized by CYP3A and has been shown to be a
mechanism-based inhibitor of CYP3A4 but not CYP3A5 (Khan et al.,
2002). In addition, its PK in humans is dependent on AAG binding,
which limits its tissue availability (Heikinheimo et al., 2003). This ob-
servation may suggest that additional attention is required when inter-
preting in vitro/in vivo data for potent inhibitors of CYP3A and that
caution is needed when applying a b scalar to compounds for which al-
bumin is not the only major binding protein in plasma.
Another highly bound compound, edaravone (fu,p 5 0.001), was

poorly predicted in all cases (no scalar AFE: �0.004; method 1 AFE:
�0.016; method 2 AFE: �0.097; method 3 AFE: �12.6). Despite our
best efforts to only include compounds that can be adequately modeled
with in vitro hepatocyte data, it is evident that this compound is known
to be primarily eliminated via phase II metabolic pathways, including
multiple renal/hepatic UDP-glucuronosyltransferases (UGTs) and to a
lesser extent cytosolic sulfotransferases (SULTs) (FDA label: https://
www.accessdata.fda.gov/drugsatfda_docs/label/2017/209176lbl.pdf).
These complexities may explain disconnects observed for edaravone
as well for other compounds in the dataset that can be difficult to an-
ticipate during early phases of drug discovery.
In this work, all drugs were treated in a similar fashion independent

of physiochemical properties. This is advantageous in early drug discov-
ery where there may be several hundreds of compounds screened per
therapeutic target with only limited data available. An apparent

Fig. 8. Comparative summary of AAFE values across all of the scaling methods.
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drawback to using this approach retrospectively is the lack of identifi-
ability in any phenomena that are particularly responsible for inaccura-
cies in predictions, making it nonmechanistic in nature. In cases where
these scalars are applied, one could imagine the a scalar on CLint,u could
be responsible for correcting for loss of hepatocyte activity over time,
especially for low extraction drugs. In addition, because many highly
bound drugs are anionic in nature and organic anion transporting poly-
peptide (OATP) substrates, the b scalar is amenable for accounting for
any unidentifiable phenomenon (including potentially albumin-facili-
tated uptake). Although it is apparent that the training set of compounds
used in this study (GNE training, N 5 28) had a much lower accuracy
in terms of CL predictions compared with the GNE validation and
GNE 1 AZ datasets, based on the relative magnitude of improvement
for each individual dataset using each method, the utility of these scal-
ing approaches for improving CL predictions is evident. The application
of the scalars identified in this study to a dataset of 348 compounds in
preclinical species (mouse, rat, dog, and cynomolgus monkey) (data not
shown) appears to support the findings observed in the human dataset:
AAFE from 4.3 (no scalars) to 2.4 (method 1), 2.1 (method 2), and 2.0
(method 3). Analogous to the human dataset, the gap in accuracy be-
tween method 1 and the other two methods corresponds to a marked in-
crease in average error observed when predicting the 29 highly bound
compounds available in this set: 4.6 (method 1), 2.1 (method 2), and
2.8 (method 3). Because the scalars used in the preclinical species are
derived from humans, these preliminary results suggest that they ad-
dress phenomena that are species independent in their nature, also sup-
ported by previous findings using rat and human hepatocytes (Francis
et al., 2021). Although more work will be necessary to mechanistically
understand the reasons why these scalars appear to improve accuracy in
CL predictions across different drug classes, these observations have di-
agnostic value and may assist additional future investigations.
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Supplemental Table 1: GNE compound list and in vitro parameters determined in human plasma 

(𝑓𝑓𝑢𝑢,𝑝𝑝), hepatocytes (𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖) and microsomes (𝑓𝑓𝑢𝑢,𝑚𝑚𝑖𝑖𝑚𝑚) used for 𝐶𝐶𝐶𝐶 predictions (N = 56). In vitro data 

are presented as mean values from experiments performed in triplicate. 

 

Drug Elimination 
Pathway 𝑓𝑓𝑢𝑢,𝑝𝑝 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 

(mL/min/kg) 𝑓𝑓𝑢𝑢,𝑚𝑚𝑖𝑖𝑚𝑚 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢 
(mL/min/kg) 

𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 
(mL/min/kg) 

Acetaminophen P2 0.52 8.7 0.979 8.9 5 
Ambrisentan P2 0.027 0.4 1 0.4 0.54 

Amitriptyline HCl CYP 0.12 32 0.4 80 9.34 
Antipyrine CYP 0.93 5.8 1 5.8 0.64 
Caffeine CYP 0.64 2.4 1 2.4 1.4 

Chlorpromazine CYP 0.044 40 0.076 526.3 16 
Citalopram CYP 0.2 10.7 0.828 12.9 4.3 

Clomipramine HCl CYP 0.039 30.3 0.22 137.9 8.2 
Clonazepam CYP 0.15 16.1 0.79 20.4 0.88 
Clozapine P2 0.098 17 0.526 32.3 2.5 
Codeine P2 0.7 16.4 0.961 17.1 15 

Cyclobenzaprine CYP 0.13 23 0.46 50 10 
Cyclophosphamide CYP 0.93 0.3 0.977 0.3 1.1 

Desipramine CYP 0.16 17 0.394 43.1 11 
Dexamethasone CYP 0.32 7.1 0.799 8.8 3.3 

Diphenhydramine CYP 0.38 25 0.9 27.8 9.8 
Dronedarone CYP 0.001 38 0.004 9500 20.7 

Gefitinib CYP 0.053 6.1 0.38 16.1 12 
Glimepiride CYP 0.001 21.6 0.94 23 0.5 
Glyburide CYP 0.001 24 0.75 32 0.82 
Ibuprofen CYP 0.011 19 0.953 19.9 0.82 
Imatinib CYP 0.125 35 0.687 50.9 3.3 

Imipramine CYP 0.2 40.1 0.535 75 13 
Indinavir P2 0.36 28.5 0.672 42.4 18 
Lidocaine CYP 0.33 36.7 0.937 39.2 16 

Meloxicam CYP 0.007 0.4 0.942 0.4 0.12 
Metoprolol CYP 0.88 17.1 0.946 18.1 13 
Midazolam CYP 0.034 53.4 0.712 74.9 5.3 

Mifepristone CYP 0.003 80.3 0.21 382.4 0.5 
Nefazodone CYP 0.004 125 0.207 603.9 7.5 
Nevirapine CYP 0.52 2.1 1 2.1 0.3 



 

Nicardipine CYP 0.006 160 0.131 1221.4 11 
Nifedipine CYP 0.035 105 0.63 166.7 7.3 
Olanzapine CYP 0.21 6.4 0.96 6.7 5.7 
Oxazepam P2 0.065 6.6 0.765 8.6 1.1 
Paroxetine CYP 0.12 8 0.25 32 18 
Pefloxacin CYP 0.84 0.3 0.793 0.4 2 

Pioglitazone CYP 0.006 18.7 0.68 27.5 1.4 
Promethazine CYP 0.096 54.5 0.39 139.7 14 
Propranolol CYP 0.21 78 0.961 81.2 12 
Quinacrine CYP 0.24 6.4 0.67 9.6 5.1 
Quinidine CYP 0.19 7.5 0.832 9 4 
Quinine CYP 0.3 3.6 0.884 4.1 1.9 

Rosiglitazone CYP 0.007 21.9 0.79 27.8 0.65 
Saquinavir CYP 0.008 59 0.16 368.8 13 

Sulfinpyrazone CYP 0.016 4.2 0.877 4.8 0.34 
Tamsulosin CYP 0.146 9.1 0.94 9.7 0.62 

Telithromycin CYP 0.44 38 1 38 14 
Theophylline CYP 0.61 0.7 0.982 0.7 0.86 

Tolcapone P2 0.003 34.6 0.323 107.1 1.9 
Tolterodine CYP 0.13 100 0.71 140.8 8.4 

Trazodone HCl CYP 0.053 26.9 0.9 29.9 1.4 
Venlafaxine CYP 0.73 23.6 0.922 25.6 14 
Verapamil CYP 0.28 105.5 0.782 134.9 18 
Warfarin CYP 0.023 2.6 0.813 3.2 0.055 
Zolpidem CYP 0.074 6 0.899 6.7 4.3 

 
  



 

 
Supplemental Table 2: AZ compound list and parameters used for 𝐶𝐶𝐶𝐶 predictions (N = 117) 

(Williamson et al., 2020). 

Drug Elimination 
Pathway 𝑓𝑓𝑢𝑢,𝑝𝑝 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢

* 

(mL/min/kg) 
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 

(mL/min/kg) 
Adinazolam CYP 0.352 9.9 6.2 

Alfuzosin CYP 0.292 5.4 5.9 

Alprenolol CYP 0.150 52.9 15.0 

Amsacrine CYP 0.007 65.2 4.3 

Antazoline CYP 0.562 184.2 19.7 

Axitinib CYP 0.003 71.2 5.0 

Azelastine CYP 0.145 37.6 9.0 

Basimglurant CYP 0.010 209.5 2.8 

Bendamustine CYP 0.050 155.6 4.5 

Benperidol CYP 0.219 58.3 8.3 

Bevantolol CYP 0.127 111.4 5.5 

Bortezomib CYP 0.132 20.2 19.0 

Bunazosin CYP 0.120 19.2 4.8 

Bupivacaine CYP 0.148 28.4 4.3 

Carvedilol CYP 0.019 495.9 7.8 

Cilomilast CYP 0.011 8.6 0.5 

Clarithromycin CYP 0.350 8.8 7.3 

Clindamycin CYP 0.286 17.3 4.5 

Clomipramine CYP 0.037 379.4 8.2 

Conivaptan CYP 0.010 103.7 3.0 

Cyclizine CYP 0.339 25.0 14.5 

Dabrafenib CYP 0.011 109.9 2.9 

Dexloxiglumide CYP 0.016 39.7 3.7 

Diazepam CYP 0.016 22.7 0.4 

Diltiazem CYP 0.265 21.6 13.0 

Dimetindene CYP 0.294 26.8 4.8 

Dinaciclib CYP 0.142 136.5 4.7 

Dofetilide CYP 0.490 8.7 5.2 

Domperidone CYP 0.034 276.7 9.5 

Doxazosin CYP 0.059 29.8 1.6 

Doxepin CYP 0.221 64.4 14.0 

Duloxetine CYP 0.055 392.3 8.6 

Encainide CYP 0.572 27.0 13.0 



 

Enoximone CYP 0.410 11.2 19.1 

Erlotinib CYP 0.052 25.5 1.7 

Erythromycin CYP 0.353 9.0 5.6 

Etonogestrel CYP 0.033 52.0 2.0 

Fimasartan CYP 0.023 29.2 9.6 

Finasteride CYP 0.139 9.2 2.4 

Flupentixol CYP 0.016 1815.1 4.1 

Fluphenazine CYP 0.035 3479.0 9.7 

Gestodene CYP 0.057 19.3 0.8 

Gisadenafil CYP 0.552 7.2 14.3 

Granisetron CYP 0.607 13.3 9.1 

Hydrocortisone CYP 0.380 11.0 5.7 

Idrocilamide CYP 0.036 226.9 1.0 

Indisulam CYP 0.003 165.0 0.7 

Ketamine CYP 0.652 29.2 19.0 

Levomepromazine CYP 0.056 375.6 9.9 

Levonorgestrel CYP 0.045 31.0 1.8 

Melatonin CYP 0.679 5.5 16.5 

Mepivacaine CYP 0.524 2.7 6.8 

Mibefradil CYP 0.005 3039.0 4.0 

Mirabegron CYP 0.290 6.7 13.6 

Mirtazapine CYP 0.239 14.9 8.0 

Nateglinide CYP 0.017 15.1 1.8 

Nebivolol CYP 0.030 2295.9 14.0 

Nefopam CYP 0.507 12.8 12.0 

Nortilidine CYP 0.862 5.5 9.9 

Ondansetron CYP 0.435 9.2 5.8 

Panobinostat CYP 0.391 25.1 10.2 

Pantoprazole CYP 0.028 22.3 2.2 

Papaverine CYP 0.063 141.5 11.0 

Paritaprevir CYP 0.014 53.8 5.7 

Pimobendan CYP 0.110 44.6 14.0 

Prazosin CYP 0.048 12.1 4.7 

Prednisone CYP 0.270 46.9 2.5 

Prochlorperazine CYP 0.141 1341.6 16.0 

Procyclidine CYP 0.222 18.6 0.9 

Promazine CYP 0.158 442.8 14.0 

Propafenone CYP 0.074 296.3 16.0 

Propiverine CYP 0.058 387.1 2.9 



 

Ramelteon CYP 0.183 32.9 13.1 

Ranolazine CYP 0.435 22.1 9.5 

Reboxetine CYP 0.152 5.1 0.8 

Repaglinide CYP 0.009 403.6 7.8 

Riluzole CYP 0.043 56.0 11.3 

Risperidone CYP 0.160 32.8 5.4 

Roflumilast CYP 0.005 25.6 2.2 

Ropivacaine CYP 0.242 33.1 5.5 

Semaxanib CYP 0.031 2000.0 14.0 

Solifenacin CYP 0.179 38.2 2.1 

Tasimelteon CYP 0.274 10.5 9.0 

Telcagepant CYP 0.053 31.8 5.8 

Tolamolol CYP 0.348 28.9 14.0 

Tolterodine CYP 0.253 219.2 8.4 

Tolvaptan CYP 0.026 277.3 2.4 

Trazodone CYP 0.079 27.9 1.4 

Trimipramine CYP 0.091 235.3 16.0 

Verlukast CYP 0.002 154.6 0.7 

Vilazodone CYP 0.054 53.2 3.8 

Vinorelbine CYP 0.400 40.0 20.0 

Voriconazole CYP 0.566 15.0 8.3 

Chlorambucil OTHER 0.010 139.9 2.8 

Danusertib OTHER 0.337 10.9 6.1 

Dexmedetomidine OTHER 0.148 27.3 11.0 

Mebendazole OTHER 0.066 40.7 15.0 

Metopimazine OTHER 0.273 83.9 12.1 

Nintedanib OTHER 0.016 809.3 19.9 

Remimazolam OTHER 0.164 669.3 15.0 

Selegiline OTHER 0.369 77.5 20.0 

Thalidomide OTHER 0.400 9.2 3.4 

Tozasertib OTHER 0.069 412.0 18.4 

Ziprasidone OTHER 0.001 575.7 5.1 

Canagliflozin P2 0.010 51.9 2.7 

Deferasirox P2 0.006 40.6 0.8 

Dipyridamole P2 0.048 176.9 2.0 

Edaravone P2 0.001 6.2 1.4 

Flavopiridol P2 0.090 33.0 6.1 

Irinotecan P2 0.397 14.4 7.0 

Mizolastine P2 0.023 31.7 1.0 



 

Olodaterol P2 0.516 27.5 12.5 

Tolfenamic acid P2 0.003 863.9 2.4 

Biperiden UNK 0.100 46.4 12.0 

Doxapram UNK 0.440 22.4 5.3 

Ridogrel UNK 0.063 6.6 1.1 
Volasertib UNK 0.145 48.9 11.6 

*Values were calculated using internal physiological scaling factors and raw data published in 

Supplemental Information (Williamson et al., 2020). 

 

  



 

Supplemental Figure 1: Unbound intrinsic 𝐶𝐶𝐶𝐶 (𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢) versus 𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷,𝑝𝑝𝑝𝑝=7.4 for the GNE dataset 

(N = 56) with 22 additional compounds, including those undergoing non-metabolic routes of 

elimination (total N = 78). In vitro data are mean values from experiments performed in triplicate. 

Data is stratified by major mechanism of elimination denoted by color (red: CYP-mediated, green: 

phase II metabolism, yellow: renal elimination, purple: biliary elimination). 

  



 

Supplemental Figure 2: Correlation plots of 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 vs. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 of the GNE + AZ datasets for each 

of the scaling methods. 

 

 

  



 

Supplemental Figure 3. A comparison in fold-change in 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢 with respect to 𝑓𝑓𝑢𝑢,𝑝𝑝 between two 

modeling approaches (Francis et al. and GNE method 2 using the 𝛽𝛽 scalar). The impact of these 

scalars on 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢 are within 2-fold of each other (𝑓𝑓𝑢𝑢,𝑝𝑝 ranging from 0.0001 – 1) (Francis et al., 

2020). 
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