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ABSTRACT

Cytochrome P450 reaction phenotyping to determine the frac-
tion of metabolism (f,,) values for individual enzymes is a stan-
dard study in the evaluation of a new drug. However, there are
technical challenges in these studies caused by shortcomings in
the selectivity of P450 inhibitors and unreliable scaling procedures
for recombinant P450 (rCYP) data. In this investigation, a two-step
“qualitative-then-quantitative” approach to P450 reaction phenotyp-
ing is described. In the first step, each rCYP is tested qualitatively
for potential to generate metabolites. In the second step, selective
inhibitors for the P450s identified in step 1 are tested for their ef-
fects on metabolism using full inhibition curves. Forty-eight drugs
were evaluated in step 1 and there were no examples of missing an
enzyme important to in vivo clearance. Five drugs (escitalopram, flu-
vastatin, pioglitazone, propranolol, and risperidone) were selected
for full phenotyping in step 2 to determine f,, values, with findings
compared with f,,, values estimated from single-inhibitor concentra-
tion data and rCYP with intersystem extrapolation factor correc-
tions. The two-step approach yielded f,, values for major drug-
clearing enzymes that are close to those estimated from clinical

data: escitalopram and CYP2C19 (0.42 versus 0.36—-0.82), fluvasta-
tin and CYP2C9 (0.76 versus 0.76), pioglitazone and CYP2C8 (0.72
versus 0.73), propranolol and CYP2D6 (0.68 versus 0.37-0.56) and
risperidone and CYP2D6 (0.60 versus 0.66-0.88). Reaction pheno-
typing data generated in this fashion should offer better input to
physiologically based pharmacokinetic models for prediction of
drug-drug interaction and impact of genetic polymorphisms on drug
clearance. The qualitative-then-quantitative approach is proposed
as a replacement to standard reaction phenotyping strategies.

SIGNIFICANCE STATEMENT

Cytochrome P450 reaction phenotyping is important for projec-
ting drug-drug interactions and interpatient variability in drug
exposure. However, currently recommended practices can fre-
quently fail to provide reliable estimates of fractional contribu-
tions to (f,,) of specific P450 enzymes to drug clearance. In this
report, we describe a two-step qualitative-then-quantitative re-
action phenotyping approach that yields more accurate esti-
mates of f,,.

Introduction

Pharmacokinetic drug-drug interactions (DDI), wherein one
drug (the “perpetrator” or “precipitant”) alters the clearance of a
second drug (the “victim” or “object”), is important in pharmaco-
therapy and new drug development. This can occur by a variety
of mechanisms, but the most common is when an enzyme re-
sponsible for metabolism of a victim drug is inhibited or inacti-
vated by a perpetrator drug. The potential magnitude of a DDI
depends on the relative fractional contributions of individual en-
zymes to the metabolic clearance of the victim drug (f,,), as well
as concentration and potency of the perpetrator drug, as de-
scribed in the following equation (Rowland and Matin, 1973):
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DDI = ! (1)

(Hf%)ﬂl —f)

Thus, the larger the value for f,,, the larger the potential DDI can
be. This concept can be extended to pharmacogenetics to understand
the potential magnitude of differences in exposure to a drug that is
metabolized by a drug-metabolizing enzyme subject to genetic poly-
morphism. This simple concept can be further complicated by applica-
tion of the extended clearance concept wherein drug transport
processes can have an impact on overall clearance, and thus enhance
or temper the magnitude of DDI caused by alterations in metabolism
(Yoshida et al., 2013). Nevertheless, the concept of f, remains
important.

In vitro methods to estimate the relative contributions, i.e., f;,, values,
of specific human cytochrome P450 (P450) enzymes to the overall me-
tabolism of drugs have been applied for over 30 years (Gelboin et al.,
1985). The three main tools/approaches to conduct these experiments
are 1) individually expressed P450 enzymes, 2) inhibitory antibodies
and chemical inhibitors of defined selectivity, and 3) correlation to

ABBREVIATIONS: DDI, drug-drug interaction; EMA, European Medicines Agency; fc, fraction of the total metabolism contributed by a meta-
bolic pathway; fconTr, fraction of metabolic pathway contributed by an isoform; FDA, US Food and Drug Administration; f,, fraction of metabo-
lism; HPLC, high-performance liquid chromatography; HRMS, high-resolution mass spectrometry; ISEF, intersystem extrapolation factor; P450,
cytochrome P450; PPP, 2-phenyl-2-(1-piperidinyl)propane; rP450, recombinant P450; TAO, troleandomycin; UHPLC, ultrahigh pressure liquid

chromatography.
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Improved P450 Reaction Phenotyping

P450 marker activities measured in panels of liver microsome lots ob-
tained from individual donors. These became available in the early
1990s and have evolved and improved since that time. Methods became
defined by the late 1990s (Parkinson, 1996; Rodrigues, 1999) and were
summarized in a cross-pharmaceutical industry position paper (Bjornsson
et al., 2003). Despite common and widespread application, these methods
suffer some limitations (Bohnert et al., 2016). The use of relative activity
factors, relative abundance factors, and intersystem extrapolation factors
(ISEFs) for scaling in vitro data gathered in individually expressed P450
enzymes can be confounded by substrate-dependent activity differences
(Siu and Lai, 2017; Lindmark et al., 2018; Wang et al., 2019; Dantonio
et al., 2022). Inhibitors commonly used as probes do not possess ade-
quate selectivity to their target enzymes, and this can limit accuracy of f;,,
(Lu et al., 2003; Khojasteh et al., 2011; Nirogi et al., 2015; Doran et al.,
2022). Also, correlation analysis does not yield f;,, values, and can only
be successful when the relative contribution by a P450 enzyme is high.
These challenges are all compounded by the possibility of involvement
of other non-P450 enzymes, which must also be defined in any given
study to define f;,, values.

In this work, an alternate methodological approach to P450 reaction
phenotyping has been defined. Instead of using two of the three afore-
mentioned approaches in parallel as described in position papers and reg-
ulatory guidance documents [Bjornsson et al., 2003; Bohnert et al., 2016;
US Food and Drug Administration (FDA), 2020; European Medicines
Agency (EMA), 2012] and hoping for results of quantitative concurrence,
a sequential qualitative-then-quantitative process (a.k.a., “mapping and
detailing”) is described that combines modern high-resolution mass spec-
trometry (HRMS) drug biotransformation experiments in individual P450
enzymes with more thorough chemical inhibition experiments and com-
plex data fitting. In the first step, a drug of interest is incubated with a
wide panel of individual P450 enzymes at a high concentration and me-
tabolite profiles are determined using high-performance liquid chroma-
tography UV-HRMS to identify, qualitatively, which P450 enzymes
demonstrate any capability for generating metabolites. In the second step,
metabolism of the drug of interest is measured quantitatively in pooled
human liver microsomes in the presence and absence of inhibitors for
P450 enzymes identified in the first step. The range of inhibitor concen-
trations and number of datapoints in the second step is high in order to
delineate inhibition curves that can be reliably fit to complex functions
and account for suboptimal inhibitor selectivity (Doran et al., 2022).
This approach was evaluated using 48 drugs for step 1 and five of those
(shown in Fig. 1) were selected to progress to step 2. Data were com-
pared with clinical observations. This method is proposed as one that
yields f,,, data of greater confidence and avoids spurious assignments of
P450 enzymes that do not have meaningful contributions to the metabo-
lism of individual drugs.

Materials and Methods

Materials. Pooled human liver microsomes (50 donors, mixed sex) were
prepared under contract by Xenotech (Lenexa, KS) and were stored in 20%
glycerol at 20 mg/mL at —80°C. Individual heterologously expressed human
P450 enzymes in the baculosome system, each at 1 nmol P450/mL, were ob-
tained from Corning Life Sciences (Tewksbury, MA). Cryopreserved human
hepatocytes were a custom mix of 13 donors of both sexes prepared under con-
tract by BioIVT (Baltimore, MD). The 48 drugs used in this analysis were from
either Sigma-Aldrich (St. Louis, MO) or Sequoia Research Products (Pan-
gbourne, UK). Metabolites of escitalopram, fluvastatin, pioglitazone, risper-
idone, and propranolol used as standards for bioanalysis were prepared by
biosynthesis using a previously described method (Walker, et al., 2014),
with the exceptions of the following, which were purchased from commer-
cial sources: N-desmethylcitalopram and 5-hydroxypropranolol (Toronto

Research Chemicals; North York, Ontario, Canada); 9-hydroxyrisperidone Fig. 1. Metabolism of escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone.
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(paliperidone, USP; North Bethesda, MD); and 4-hydroxypropranolol, N-
desiospropylpropranolol; and 6-fluoro-3-(4-piperidinyl)-1,2-benzisoxazole
(Sigma-Aldrich). NADPH (tetrasodium salt) was from Sigma-Aldrich. Wil-
liams E medium was from Thermo Fisher (Waltham, MA).

Metabolite Profiles in Recombinant P450 Enzymes. Drugs (10 pM)
were incubated with 17 individually expressed P450 enzymes (100 pmol/
mL) or human liver microsomes (2 mg/mL) and NADPH (1.3 mM) in 0.2
mL of potassium phosphate buffer (100 mM, pH 7.5) containing MgCl,
(3.3 mM). The recombinant P450s (rP450s) evaluated were CYP1Al,
CYP1A2, CYPIBI1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2CIS,
CYP2C19, CYP2D6, CYP2E1l, CYP2J2, CYP3A4, CYP3AS, CYP3A7,
CYP4A1l, and CYP4F2, all wild type. Incubations were initiated with the
addition of enzymes and conducted for 1 hour at 37°C in a shaking water
bath. Incubations were terminated with the addition of acetonitrile (0.6 mL) and
spun in a centrifuge at 1800g for 6 minutes. Supernatants (0.6 mL) were trans-
ferred to limited-volume glass inserts and subjected to vacuum centrifugation to
remove the liquid. The residues were reconstituted in 0.1 mL 20% acetonitrile in
water, spun at 1800g for 5 minutes for analysis by ultrahigh pressure liquid chro-
matography (UHPLC)-UV-HRMS.

The UHPLC-UV-HRMS system consisted of a Thermo Fisher Vanquish
quaternary pumping system, with the autoinjector maintained at 10°C, col-
umn heater held at 45°C, and diode array UV detector operated at a wave-
length range of 200-500 nm at 4 nm intervals at 50 Hz, in line with a
Thermo Fisher Elite Orbitrap mass spectrometer. Separations were affected
on a Phenomenex Kinetex XB-C18 column (2.3 x 100 mm; 2.6 p) using
one of two mobile phases—acidic or neutral—at a flow rate of 0.4 mL/min.
The acidic mobile phase was 0.1% formic acid in water and acetonitrile and
the neutral mobile phase was 10 mM ammonium acetate in water and aceto-
nitrile. Mobile phase gradients were adjusted to optimize separations for
each drug and its metabolites. The eluent was introduced into a heated elec-
trospray ionization source on the mass spectrometer operated in the positive
ion mode. Source settings were 4 kV for potential; 375°C and 275°C for
source and capillary temperatures; and flows of 50, 20, and 2 for sheath,
auxiliary, and sweep gas, respectively (arbitrary units). The orbitrap was set
to scan a range of 100-1000 m/z at a resolution setting of 30000.

The data were interrogated first by visual inspection of the UV data using
an extracted wavelength maximum for the parent drug and comparing data
from P450-containing incubations to those in an incubation that contained
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microsomes from nontransfected control. They were then interrogated simi-
larly by visual inspection of total ion current, and ultimately ion current of
extracted ions of likely P450 biotransformation products (e.g., hydroxylation, het-
eroatom dealkylation, etc.) at a resolution of 5 ppm. A positive response was
considered as a peak that had a height that was twice the background in the con-
trol incubation.

Enzyme Kinetics in Human Liver Microsomes and Human Hepato-
cytes. To select an appropriate sub-Ky, concentration for subsequent inhi-
bition experiments, the enzyme kinetics for the metabolism of
escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone were
determined in either pooled human liver microsomes or pooled human
hepatocytes using previously determined time and optimized protein or
cell density linear conditions. In general, for human liver microsome

Doran et al.

incubations, substrates were incubated in 100 mM potassium phosphate
buffer (pH 7.4) containing MgCl, (3.3 mM) and NADPH (1.3 mM) at
37°C. Incubations were terminated with the addition of acetonitrile con-
taining internal standard. In general, for human hepatocyte incubations,
substrates were incubated in a custom formula of William’s E Medium
supplemented with 26 mM NaHCOj; in an incubator set to 37°C with 5%
CO, and 75% relative humidity. Incubations were commenced with the ad-
dition of substrate and terminated with the addition of acetonitrile contain-
ing internal standard. Details of the incubation conditions for each of the
five substrates are listed in Supplemental Tables 1-3, and the bioanalytical
methods used for each are listed in Supplemental Tables 4 and 5. Experi-
ments were run in triplicate. Enzyme kinetic parameters were determined
as described below.

amitriptyline
amlodipine
amodiaquine
aripiprazole
atomoxetine
bufuralol
bupropion

desipramine

diclofenac
escitalopram

febuxostat
fluoxetine
fluvastatin
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metoprolol
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saquinavir
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tacrine

Fig. 2. Summary of metabolism of 48 drugs by 17 rCYP en-
zymes. Dark green boxes indicate the observation of metabolites
by HPLC-UV and mass spectrometry. Pale green boxes indicate
the observation of metabolites only by mass spectrometry. Gray
boxes indicate that no metabolism was observed. The presence
of a solid circle indicates that there is clinical and in vitro evi-
dence for the involvement of an enzyme in the metabolism of the
drug, while an open circle indicates that there is only in vitro evidence
for the involvement of an enzyme in the metabolism of the drug. A
list of the literature references supporting the placement of solid and
open circles is in the Supplemental Information.
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TABLE 1

Enzyme kinetics and calculated fcy, values for the metabolism of escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone.

Values for V.. and Ky, are mean (S.E.). Velocity units are in pmol/min/mg microsomal protein for fluvastatin, pioglitazone, and risperidone. Units are in pmol/min/
million cells for escitalopram and propranolol. Intrinsic clearance units are WL/min/mg for fluvastatin, pioglitazone, and risperidone and pL/min/million cells for

scitalopram and propranolol. Units for KM are in uM.

Drug/Reaction Vinax (1) Ky (1) CLin (1) Vinax (2) Ku (2) CLin (2) Total CLiy Pathway fc;.
Escitalopram®
N-demethylation 30.6 (2.34) 46.9 (6.63) 0.652 — — — 0.652 0.80
N-deamination 12.1 (0.82) 76.2 (9.63) 0.159 — — — 0.159 0.20
Fluvastatin
5-hydroxylation 6.53 (0.26) 0.326 (0.026) 20.0 4.11 (0.22) 11.6 (2.3) 0.35 204 0.36
6-hydroxylation 499 (5) 20.9 (0.5) 239 — — — 23.9 0.42
N-dealkylation 3.76 (0.08) 0.318 (0.015) 11.8 4.61 (0.07) 18.1 (1.3) 0.26 12.1 0.21
Pioglitazone”
1’-hydroxylation 214 (10.2) 9.22 (0.8) 232 — — — 23.2 0.45
2-hydroxylation 29.6 (1.0 4.90 (0.3) 6.05 — — — 6.05 0.12
2’-hydroxylation 26.3 (1.1) 1.83 (0.2) 14.4 — — — 14.4 0.28
5-hydroxylation 484 (37) 61.6 (5.9) 7.85 — — — 7.85 0.15
Propranolol®
Glucuronidation 1 30.6 (10.3) 15.2 (5.3) 2.01 47.6 (5.5) 177 (114) 0.269 2.28 0.075
Glucuronidation 2 33.9 (15.5) 13.0 (5.5) 2.61 35.3 (11.7) 106 (90) 0.333 2.94 0.097
4-hydroxylation 339 (1.2) 1.46 (0.10) 22.6 35.6 (2.0) 113 (25) 0.315 229 0.77
5-hydroxylation 0.57 (0.1) 5.06 (1.08) 0.113 — — 0.013 0.126 0.004
N-dealkylation 16.0 (2.4) 11.7 (3.0) 1.37 — — 0.176 1.55 0.051
Risperidone
7-hydroxylation 16.2 (1.4) 10.5 (2.3) 1.54 — — 0.063 (0.005) 1.61 0.16
9-hydroxylation 170 (23) 27.3 (7.2) 6.23 — — 0.59 (0.07) 6.82 0.67
N-dealkylation 92.1 (4.1) 57.5 (3.7) 1.60 — — 0.14 (0.01) 1.74 0.17

“Data for escitalopram and propranolol are from pooled human hepatocytes.
“Pioglitazone enzyme kinetics best fit a model that also included substrate inhibition with
respectively.

Inhibition of P450 Activity in Human Liver Microsomes. Inhibition ex-
periments were conducted using the same incubation conditions listed for
each substrate in Supplemental Tables 1 and 2. Fixed substrate concentra-
tions were used: escitalopram (4 pM), fluvastatin (0.1 pM), pioglitazone

K, values of 654, 67.2, 76.5, and 23.5 uM for 1°, 2, 2’, and S5-hydroxylation pathways,

(0.3 uM), propranolol (0.5 pM), and risperidone (1.0 pM). P450-selective
inhibitors were evaluated at both single concentrations and >18-point con-
centration curves. The concentration ranges used for each were: furafylline
for CYP1A2 (0.01-20 uM or 100 pM), phenylethylpiperidine (PPP) for

TABLE 2

Single-inhibitor concentration data for the metabolism of escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone and estimates of f;,.

Percent inhibition data are mean (S.E.); values labeled with an asterisk (*) are statistically significant. Estimated f,, calculated only from enzymes with statistically

significant outcomes. The single concentrations of inhibitors used for these estimates

are listed in Supplemental Table 9.

fer CYPIA2 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP3A Sum
Escitalopram

N-demethylation 0.80 73 (5.7) 15.6 3.7)% 34.2 (2.5)* 6.7 (10.0) 31.3 (L.6)** 10.3 (6.5) 433 (2.5)%

N-deamination 0.20 ND° ND® ND* ND* 89.0 (1.4)** ND°® ND*

Estimated f,, 0.13 0.28 0.43 0.35 1.19
Fluvastatin

5-hydroxylation 0.36 <0° <0° <0° 95.0 (0.4)* 11.9 (1.4)* 3.7 (3.9) 239 (2.3)%

6-hydroxylation 0.42 <0° <0° 0.5 (6.9) 61.2 (1.4)% 10.5 (2.6)* <0° 31.5 (1.4)*

N-dealkylation 0.21 <0P <P <0P 96.6 (1.4)* 10.2 (2.6)* 2.8 (2.6) 9.8 (1.3)*

Estimated f,, 0.81 0.11 0.24 1.16
Pioglitazone

1’-hydroxylation 0.45 <0° 1.2 (1.4) 76.3 (4.0)* <0° <0° <0° <0°

2-hydroxylation 0.12 <0P 0.4 (4.1) 52.4 (4.3)% 31.5 (6.4)* <P <P <P

2’-hydroxylation 0.28 <0° <0P 69.1 (5.3)* <0® <0P <0P <0®

5-hydroxylation 0.15 292 (5.8)* 2.3 (6.3) 45 (13.2) 54 (9.1) <0® <0® 243 (1.9)*

Estimated f,, 0.04 0.60 0.04 0.04 0.72
Propranolol?

4-hydroxylation 0.77 0.6 (14.9) 11.7 (10.0) 19.0 (9.7) 3.5 (6.4) 1.1 (8.8) 91.1 (11.6)* 0.93 (4.5)

5-hydroxylation 0.004 <0® 16.4 (17.7) 24.4 (17.0) 11.4 (9.9) 11.9 (12.6) 88.5 (10.2)* <0®

N-dealkylation 0.05 70.2 (5.0)* 3.3 (10.5) 28.0 (7.9) 23.3 (8.7) 16.7 (8.8) 35.3 (7.3)* 0.56 (2.1)

Estimated f,, 0.04 0.73 0.77
Risperidone

7-hydroxylation 0.16 <0° 12.9 (7.3) 222 (5.5)* 12.9 (7.3) <0® 87.4 (2.3)* <0®

9-hydroxylation 0.67 <0° 13.4 (14.5) 232 (5.3) 16.8 (11.6) 7.4 (1.3) 62.4 (4.2)% 25.8 (1.6)*

N-dealkylation 0.17 <0° 39.2 (17.1) 30.8 (7.0) 39.2 (17.1) 24.0 (6.8)* 19.7 (8.1) 90.4 (7.9)*

Estimated f,, 0.04 0.04 0.56 0.33 0.97

“Data for CYP2C19 catalyzed escitalopram metabolism were from esomeprazole in human hepatocytes.

PRates in inhibited incubation were greater than in the control incubation.
°ND, not determined.

dfer excludes the contribution of glucuronidation determined in human hepatocyte kinetics reported in Table 1.
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CYP2B6 (0.01-100 pM), montelukast for CYP2C8 (0.001-10 uM), sulfa-
phenazole for CYP2C9 (0.01-100 pM), N-benzylnirvanol for CYP2C19
(0.005-50 uM), quinidine for CYP2D6 (0.0001-10 pM), and troleandomy-
cin for CYP3A (0.01-100 uM). Since furafylline, troleandomycin (TAO),
and PPP are time-dependent inhibitors, these were each preincubated for
10 minutes with microsomes and NADPH prior to addition of substrate.
Positive control substrate reactions for each inhibitor were included using
a previously established method (Supplemental Tables 6 and 7) and non-
specific binding of the inhibitors to microsomes was corrected based on
previously determined values (Supplemental Table 8; Doran et al., 2022).

The percent activity remaining was obtained by normalizing metabolite con-
centration data to the averaged solvent controls. The inhibitory profiles were gen-
erated using GraphPad Prism for Windows (version 9). In general, nonlinear
regression of the data were conducted using the log [I] versus normalized re-
sponse with variable slope model to better fit the data, which uses the following
inhibitory equation (referred to as the “four-parameter fit”):

Top — Bottom

Y = Bottom + TF bl niCe)

(@)
where Y is the percent of control activity remaining and x is the inhibitor concentra-
tion. The four parameters in the model are the ICSO, which represents the inhibitor con-
centration that yields a response halfway between the upper and lower asymptotes; the
hill slope (h), which represents the steepness of the curve; and the upper and lower
asymptotes (Top and Bottom, respectively), which represent the maximum and mini-
mum possible responses. The maximal contribution of a P450 was determined by the
span or the difference between the fitted upper and lower asymptotes:

Doran et al.

In certain instances, the above equation was not able to fit the data, and the
equation below was used to fit the data (referred to as the “six-parameter fit”):

3 MAX, MAXjp
Y = Inax — MAX,+ <1 Feh(n x—lnIC50A)> —MAXp+ <1 +eh(1nx—lnIC50B)>

“)

where Y is the percent control activity remaining and x is the inhibitor concentra-
tion. The six parameters in the model are MAX, and MAXg, which represent
the maximum contribution of enzymes A and B, respectively; ICsop and ICsgp,
which are the inflection points for the inhibitor on enzymes A and B, re-
spectively; the hill slope (h), which represents the steepness of the curve for
enzymes A and B; and I,.., which represents the maximum possible re-
sponse (Doran et al., 2022).

Rates of Metabolism in rP450 Enzymes. The metabolism of the five drugs
was measured in seven major hepatically expressed rCYP enzymes. Specifics for
each drug are listed in Supplemental Table 3. In general, each drug was incu-
bated with 1, 10, and 100 pmol P450/mL in 100 mM potassium phosphate buffer
containing MgCl, (3.3 mM) and NADPH (1.3 mM). Incubations were com-
menced with the addition of NADPH and carried out at 37°C. At various times
up to 60 minutes, aliquots were removed and reactions terminated by addition to
four volumes of acetonitrile containing internal standard. Substrate concentrations
were below Ky, values that had been determined in either human liver microsomes
or human hepatocytes. Reaction velocities were determined from the product
formed versus time plots at the incubation condition that yielded linear product for-
mation over the longest incubation time and at the lowest enzyme concentration.

Estimation of f,,, Values. Estimations of f,,, values were made as follows.
Enzyme kinetic data were used to calculate intrinsic clearance (CL;,) for each

span = Top — Bottom (3) metabolic pathway in pooled human liver microsomes:
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TABLE 3

Maximum percentage inhibition values (MAX,) from multiple concentration inhibition experiments for the metabolism of escitalopram, fluvastatin, pioglitazone, pro-
pranolol, and risperidone and estimates of fy,.

Maximum percentage inhibition data are mean (SE). All unbound ICsg values are listed in Supplemental Table 11.

Enzyme
Pathway
for® CYP1A2 CYP2B6 CYP2C8 CYP2C9 CYP2CI19 CYP2D6 CYP3A Sum f,

Escitalopram

N-demethylation 0.80 — — 24.3 (7.1) — 28.3 (1.7)° 19.5 (2.01) 36.0 (3.1)

N-deamination 0.20 — — — — 97.1 (5.2)° — —

Estimated f;,, — — 0.20 — 0.42 0.16 0.29 1.07
Fluvastatin

5-hydroxylation 0.36 — — — 98.0 (0.9) — — —

6-hydroxylation 0.42 — — — 47.7 2.7) — — 36.3 (1.7)

N-dealkylation 0.21 — — — 97.2 (1.5) — — —

Estimated f,,, — — — 0.77 — — 0.15 0.92
Pioglitazone

1’-hydroxylation 0.45 — — 85.1 (2.2) — — — —

2-hydroxylation 0.12 — — 449 (7.6) 31.4 (2.7) — — —

2’-hydroxylation 0.28 — — 100 (5.8) — — — —

5-hydroxylation 0.15 — — — — — — 32.8 (2.4)

Estimated f;,, — — 0.72 0.04 — — 0.05 0.81
Propranolol®

4-hydroxylation 0.77 — — — — — 86.0 (3.5) —

5-hydroxylation 0.004 — — — — — 76.1 (2.8) —

N-dealkylation 0.05 68.9 (4.8) 33.6 (6.0) — — — 17.5 (2.0) —

Estimated f;,, 0.03 0.02 — — — 0.68 — 0.73
Risperidone

7-hydroxylation 0.16 — — — — — 91.4 (2.9) —

9-hydroxylation 0.67 — — — — — 67.1 (4.1) 24.9 (2.7)

N-dealkylation 0.17 — — — — — — 99.1 (7.1)

Estimated f;,, — — — — — 0.60 0.34 0.94

“Human hepatocyte-derived fc. values for escitalopram and propranolol, all others in human liver microsomes.
From chemical inhibition conducted in human hepatocytes.
“fcr excludes the contribution of UGT metabolism determined in human hepatocyte kinetics reported in Table 1.

L pawayx = Vinax (one — enzyme model) 5) in which CLip pamwayx Tefers to the intrinsic clearance for a specific metabolic
Km pathway, V.« and Ky are the maximum reaction velocity and Michaelis cons-
or tant for that pathway, and, when necessary, CLi,>, represents a high capacity/
Vmux i 1vi 1 1
CLins pattowayy = a4 CLin() (two — enzyme model) (6) high Ky e.nzyme activity wherein the Ky; was greater than the highest substrate
Ky concentration evaluated.

TABLE 4

ISEF adjusted rCYP rate data for escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone.

Rate data are expressed in intrinsic clearance terms (v/[S]) and are in units of wL/min/mg microsomes. Values represent the measured rates from
Supplemental Table 10 multiplied by the P450-specific ISEF and P450 abundance in human liver microsomes.

CYP1A2 CYP2B6 CYP2C8 CYP2C9 CYP2CI19 CYP2D6 CYP3A4

ISEF 0.052 1.3 1.8 0.38 0.33 0.054 0.19
P450 abundance® 52 17 24 73 14 8 137
Escitalopram

N-demethylation 0.00124 — 1.60 — 0.246 3.44 0.567

N-deamination — — — — 0.016 — —
Fluvastatin

5-hydroxylation — — — 6.57 — — —

6-hydroxylation — — 2.85 5.27 — 0.016 16.8

N-dealkylation — — — 0.591 — — —
Pioglitazone

1’-hydroxylation 0.133 — 10.3 0.407 0.083 0.024 0.097

2-hydroxylation — — 1.09 0.366 — — -

2’-hydroxylation — — 1.88 — — — -

5-hydroxylation — — 0.209 — — — 0.802
Propranolol

4-hydroxylation 1.60 0.00171 0.0619 0.00566 0.00444 7.15 1.44

5-hydroxylation 0.340 — 0.00753 0.00971 — 0.630 0.0256

N-dealkylation 3.16 0.0544 0.0243 0.0189 0.635 0.753 0.118
Risperidone

7-hydroxylation — — 0.0372 — 0.00517 0.0791 0.0113

9-hydroxylation — — 0.165 — 0.0223 0.566 3.28

N-dealkylation — — — — — — 19.9

“Units of pmol P450/mg human liver microsomal protein.
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TABLE 5

Percent contribution and f,,, values estimated from rCYP rate data for escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone.

Individual metabolic pathway enzyme f,, values represent the ISEF-adjusted rates for each enzyme divided by the sum of rates across all enzymes (Table 4). fcr,
derived from enzyme kinetic parameters (Table 1). Final f,, values for each enzyme are sums of the products of individual pathway f,, values and fc; values.

Isoform Contribution by Pathway (Percent)

Pathway fcr* CYP1A2 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP3A4
Escitalopram
N-demethylation 0.80 0.021 — 27.3 — 421 58.8 9.68
N-deamination 0.20 — — — — 100 — —
Total enzyme f,, <0.01 0.22 0.23 0.47 0.08
Fluvastatin
5-hydroxylation 0.36 — — — 100 — — —
6-hydroxylation 0.42 — — 11 21 — 0.065 67
N-dealkylation 0.21 — — — 100 — — —
Total enzyme f,, 0.05 0.67 < 0.01 0.29
Pioglitazone
I’-hydroxylation 0.45 1.2 — 93 3.7 0.76 0.22 0.88
2-hydroxylation 0.12 — — 75 25 — — —
2’-hydroxylation 0.28 — — 100 — — — —
5-hydroxylation 0.15 — — 21 — — — 79
Total Enzyme f,, <0.01 0.82 0.05 <0.01 <0.01 0.13
Propranolol®
4-hydroxylation 0.77 16 0.017 0.60 0.055 0.043 70 14
5-hydroxylation 0.004 34 — 0.74 1.0 — 62 2.5
N-dealkylation 0.05 66 1.1 0.51 0.40 13 16 2.5
Total enzyme f,, 0.16 <0.01 <0.01 <0.01 <0.01 0.55 0.11
Risperidone
7-hydroxylation 0.16 — — 2.8 — 39 60 8.6
9-hydroxylation 0.67 — — 4.1 — 0.55 14 81
N-dealkylation 0.17 — — — — — — 100
Total enzyme f,, 0.07 0.01 0.19 0.73
“Human hepatocyte-derived fcy values for escitalopram and propranolol, all others in human liver microsomes.
“fer excludes the contribution of UGT metabolism determined in HHEP kinetics reported in Table 1.
These CL;,, values were used to calculate the fraction of metabolic clearance  human liver microsomes:
proceeding through a pathway (fcr) by dividing the CLy,, for the pathway of in- v v
terest by the sum of CL;,, values of all pathways: (m> = <m> - ISEF cypa
CL CYPA, pathwayX, HLM CYPA, pathwayX
_ int, pathwayX
Jetpamae = " ™ pmoles of CYPA 12

The fractional clearance values for each pathway were scaled to the respective
isoform contributions to determine the fraction metabolized using the following
general equation:

fm,cypa = (foL, patwayx - fFCONTR, CYPA, pathwayx )
+ (foL, pathwayy * TCONTR, €YPA, pathwayy ) T (feL, pathwayz * fCONTR, CYPA, pathwayz )
(3)

where the term foonTr CYPA pathwayx Tefers to the inhibition of metabolic pathway
X in human liver microsomes by an inhibitor selective for CYPA. This was cal-
culated in two ways:

For single-concentration inhibition experiments:

% inhibitioncypa, pathwayx

fCONTR, CYPA, pathwayX = 100 9
or for multiple-point inhibition experiments:
SPANCYpA, pathwayX
fCONTR, CYPA, pathwayX = % (10)
_ MAXA, cypa, pathwayX
fCONTR, CYPA, pathwayX = 100 (11)

for the four-parameter and six-parameter inhibition models, respectively.

For data from heterologously expressed P450 enzymes, f,,, values were calcu-
lated as follows. Reaction velocities for each metabolic pathway for each P450
enzyme were divided by the substrate concentration evaluated in the assay to
yield v/[S] values in units of pL/min/pmol P450. These values were converted to
estimated values for each P450 enzyme in each metabolic pathway in pooled

mg microsomal protein

The ISEF values were determined from marker substrate activities and
were 0.052, 1.30, 1.80, 0.38, 0.33, 0.054, and 0.19 for CYP1A2, CYP2B6,
CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. The
values for abundance of each P450 enzyme in liver microsomes were 52,
17, 24, 73, 14, 8, and 137 pmol P450/mg protein for CYP1A2, CYP2B6,
CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. The
f., values for each P450 on an individual metabolic pathway were deter-
mined as:

v
%)
< CYPA, pathwayX, HLM

fm‘ CYPA, pathwayX — (

13)

v

%)
5] all CYP, pathwayX, HLM

The contribution of a specific P450 enzyme to the total metabolism was calcu-
lated as:

fm,cYPA = fm, cYPA, pathwayX + fm, CYPA, pathwayY + fm, CYPA, pathwayz (14)

Statistical Treatment of Data. For enzyme kinetic parameter determina-
tion, data were first plotted on Eadie-Hofstee plots for potential model assign-
ment and then the v versus v/[S] data were fit in GraphPad Prism for Windows
(version 9) to various models with selection of a model other than Michaelis-
Menten based on the Akaike Information Criterion (Nagar et al., 2014). Single-
point inhibition data were evaluated using Welch’s unpaired two-sample 7 test
with unequal variances and a significance threshold of 0.05 as described else-
where (Doran et al., 2022). Full curve dose-response inhibition data from test
compounds were fit using either the four-parameter, single ICs, dose-response
model or the six-parameter, double ICs, dose-response model, using an extra
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TABLE 6

Summary comparison of in vitro f,, data for escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone to in vivo f;,, values estimated from DDI or pharmaco-
genetic data.

Estimate of f;;, From:

Single Point PGX or
Drug Enzyme rP450s and ISEF Inhibition Inhibition Curves In Vivo DDI In Vivo References
Escitalopram CYP2B6 — 0.13 — ND
CYP2C8 0.22 0.28 0.20 ND
CYP2C19 0.23 0.43 0.42 0.36 PGX Herrlin et al., 2003;
0.45 Rudberg et al., 2009;
0.82 Rudberg et al., 2008;
0.72 Waade et al., 2014;
0.69 Jukié et al., 2018;
0.43 Tsuchimine et al., 2018
CYP2D6 047 — 0.16 <0.01 PGX Herrlin et al., 2003
CYP3A4 0.08 0.35 0.29 0.08 DDI Gutierrez et al., 2003
Fluvastatin CYP2C8 0.05 — — 0.06 DDI Spence et al., 1995
CYP2C9 0.67 0.81 0.76 0.76 PGX Kirchheiner et al., 2003
CYP2C19 — 0.11 — ND
CYP2D6 <0.01 — — ND
CYP3A4 0.29 0.24 0.15 0.12 DDI Kivisto et al., 1998
Pioglitazone CYP1A2 — 0.04 — ND
CYP2C8 0.82 0.60 0.72 0.73 DDI Aquilante et al., 2013
CYP2C9 0.05 0.04 0.04 ND
CYP3A4 0.13 0.04 0.05 0.08 DDI Jaakkola et al., 2005
Propranolol® CYP1A2 0.16 0.04 0.03 ND Byrne et al., 1984;
McLean et al., 1980
CYP2B6 <0.01 — 0.02 ND
CYP2C8 <0.01 — — ND
CYP2C9 <0.01 — — ND
CYP2C19 <0.01 — — 0.25 PGX Ward et al., 1989
CYP2D6 0.55 0.72 0.68 0.00 PGX Lennard et al., 1984
0.37 Raghuram et al., 1984
0.55 DDI Zhou et al., 1990
0.56 Yasuhara et al., 1990
CYP3A4 0.11 — — 0.39 DDI McCourty et al., 1988
0.33 Tateishi et al., 1992
0.32 Tateishi et al., 1989
0.17 Dimmitt et al., 1991
Risperidone CYP2C8 0.07 0.04 — ND
CYP2C19 0.01 0.04 — ND
CYP2D6 0.19 0.56 0.60 0.66 PGX Gasso et al., 2014
0.88 Cabaleiro et al., 2014
CYP3A4 0.73 0.32 0.34 0.36 DDI Mahatthanatrakul et al., 2012

ND, no in vivo data reported for these enzymes; PGX, pharmacogenetic data.

fcr. excludes the contribution of UGT metabolism determined in HHEP kinetics reported in Table 1.

sum-of-squares F-test to select the model that best fit the data. After fitting the
dose-response curves to the test compound data, a two-one-sided ¢ test equiva-
lence procedure was used to determine if the ICsq for the test compound was sig-
nificantly within fivefold of the ICs, for the probe substrate (Doran et al., 2022).
When the six-parameter model was selected, the ICsq of the first phase (ICs04)
of the curve was compared with the ICs, of the probe substrate. If significant
fivefold equivalence in ICs, values between the test compound and probe was es-
tablished, the reduction in percent activity of the test compound was compared
with zero. For the four-parameter model, the span parameter (difference between
upper asymptote and lower asymptote) needed to be significantly greater than
zero, while the MAX, parameter needed to be significantly greater than zero for
the six-parameter model. If both the equivalence test passed and the decrease in
activity was significantly greater than zero, then the inhibition of the target en-
zyme was reported.

Results

Metabolite Profiling in Individual P450 Enzymes. The meta-
bolic profiles for 48 drugs were evaluated in 17 individual P450 en-
zymes using UHPLC-UV-HRMS (Fig. 2). This represents the first,
“qualitative” step in the process, wherein any P450 enzymes with the
capability to generate metabolites for a given drug are identified. For
each drug, the enzymes were classified into one of three groups: 1)

metabolites were generated and observed in the UV chromatogram, 2)
metabolites were generated but only observed in the HRMS data, and
3) no metabolites were detected. Depicted in Fig. 2 are dark green
boxes that indicate the generation of metabolites observed in the UV
data (which are also observed in the more sensitive HRMS data) and
pale green boxes that indicate the observation of metabolites observed
only in the HRMS data. Within the entries on Fig. 2 are solid circles,
which indicate that a particular P450 enzyme has been demonstrated to
be involved in the clearance of the drug based on clinical pharmacoki-
netic data (either DDI data with a well-established P450-selective inhib-
itor or a difference in pharmacokinetics observed in subjects possessing
different genetic polymorphisms for P450 enzymes). Among the 48
drugs evaluated, there were 87 instances of clinical evidence supporting
meaningful contributions of specific P450 enzymes to the metabolism
of a drug. In 84 of these cases, metabolites were observed in the UV
data, and in the other three, metabolites were observed, but only in the
HRMS data. In these latter three cases, the contributions are minor
(CYP3A4 contributions to tolbutamide and venlafaxine clearance and
CYP2E1 to warfarin clearance; O’Reilly, 1973; Krishnaiah et al., 1994;
Lindh et al., 2003). Thus, there are no false negatives, i.e., every en-
zyme demonstrated to be contributing to the clearance of a drug in a
clinically meaningful manner is identified in this approach.
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Also included in Fig. 2 are previous reports of any in vitro evidence
of the involvement of a P450 enzyme in the metabolism of the 48
drugs, which are indicated with open circles. There are a total of 244 in-
stances in which evidence has been reported, using various in vitro
methods, that a P450 enzyme was claimed to be involved in the metab-
olism of a drug. Out of those, 242 were shown using the present ap-
proach. The only two not shown were reports of CYP2A6 catalyzed
metabolism of atomoxetine (MacKenzie et al., 2020) and CYP2CS8 cata-
lyzed metabolism of lansoprazole (Pichard et al., 1995), neither of
which has there been any report of clinical relevance.

In addition to the utility of these data in the qualitative-then-quantitative
approach to identifying P450 enzymes involved in metabolic clearance of
drugs, there are interesting trends that can be noted. The preponderance
of CYP2C19 and CYP2D6 in drug metabolism is high (44 of 48 and 47
of 48, respectively). This is not aligned with the frequency of meaningful
contributions of these enzymes to in vivo metabolic clearance, likely be-
cause in the experimental design employed (i.e., 100 pmol P450/mL)
these enzymes are quantitatively over-represented. It is clear that
CYP2A6, CYP4Al1, and CYP4F?2 are least frequently involved in metab-
olism (16, 17, and nine out of 48 drugs metabolized, respectively).
CYP2B6 and CYP2El were each shown to metabolize 28 of the 48
drugs, however, in almost all cases this metabolism was detected only by
HRMS data; when evaluated by UV data these two enzymes only read-
ily metabolized nine and six drugs, respectively, out of the 48. As

Montelukast,, (M)

anticipated, with few exceptions, CYP3A enzymes were shown to be ca-
pable of metabolizing almost all of the drugs. But, unexpectedly, the fre-
quency of CYP1A1l, CYPIBI, and CYP2J2 being able to generate
metabolites in high enough abundance for UV detection was high.
Within the data, there were also instances of less-studied P450 enzymes
being able to not only catalyze metabolism of certain drugs, but in
high conversion (e.g., CYP3A7 metabolism of fluvastatin, CYP2J2
metabolism of linezolid, and CYP2C18 metabolism of warfarin, to
name a few), which poses new questions regarding the possible impact
of these enzymes on the pharmacokinetics of these drugs. Examples
of the UV chromatograms for extracts of rCYP incubations for fluvas-
tatin, pioglitazone, propranolol, risperidone, and escitalopram are
shown in Supplemental Figs. 1-5.

Fluvastatin: Enzyme Kinetics and Reaction Phenotyping. Flu-
vastatin was metabolized to 5-hydroxy, 6-hydroxy, and N-desisopropyl
metabolites in human liver microsomes (Fig. 1). Enzyme kinetic data
yielded CL;, values for these three pathways that resulted in calculated
fcp values of 0.36, 0.42, and 0.21, respectively (Table 1; Supplemental
Fig. 6). Single-concentration inhibitor data showed that the P450-selective
inhibitors sulfaphenazole (CYP2C9), N-benzylnirvanol (CYP2C19), and
TAO (CYP3A4) inhibited fluvastatin overall metabolism by 81%, 11%,
and 24%, respectively (Table 2). These values compare favorably with the
estimated in vivo contribution by CYP2C9 (f,,, = 0.76; Table 6), but over-
estimate the contribution by CYP3A4. Using the maximum percent
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inhibition values estimated from complex inhibition curve fitting (Fig. 3)
yielded f,, values of 0.76 and 0.15 for CYP2C9 and CYP3A4, respec-
tively, while CYP2C19 was concluded to not contribute (Table 3). (It
should be noted that in this instance a maximal effect on 5-hydroxylation
was not reportable because of assay interference at high concentrations of
TAO.)

Recombinant CYP2C8, CYP2C9, CYP2D6, and CYP3A4 were all
demonstrated to metabolize fluvastatin at measurable rates (Supplemental
Table 10). When adjusting the measured rates for the three reactions by
ISEF values for these four enzymes (Table 4), f;,, values of 0.67, 0.29,
0.05, and <0.01 were determined for CYP2C9, CYP3A4, CYP2C8, and
CYP2D6, respectively (Table 5). Thus, like the inhibition data, the esti-
mated f,, for CYP2C9 matches reasonably well the values estimated
from in vivo pharmacogenetic data estimated for CYP2C9 (Table 6).
However, the contribution of CYP3A4 is overestimated when compared
with the clinical DDI study result (f;;, 0.12) shown in Table 6.

Pioglitazone: Enzyme Kinetics and Reaction Phenotyping. Pio-
glitazone was shown to be metabolized to four hydroxylated metab-
olites (Fig. 1), and these matched those that had been structurally
characterized previously (Shen et al., 2003). Enzyme kinetic analy-
sis of pioglitazone metabolism in human liver microsomes revealed
that almost three-quarters of intrinsic clearance arises via 1’- and
2’-hydroxylation of the ethyl side chain (Table 1; Supplemental
Fig. 7). Single-concentration inhibitor data supported that CYP2CS,
CYP3A, CYP2C9, and CYP1A2 were involved in pioglitazone metabo-
lism with estimated contributions of 0.60, 0.04, 0.04, and 0.04,

respectively (Table 2). However, full curve data did not show a contri-
bution from CYP1A2, but showed high involvement of CYP2CS (f,,, =
0.72) along with small contributions from CYP2C9 and CYP3A4 (Ta-
ble 3; Fig. 4).

Among rCYP enzymes, pioglitazone metabolites were generated by
CYP1A2, CYP2C8, CYP2C9, and CYP3A4 (as above) but also
CYP2C19 and CYP2D6 (Supplemental Table 10). However, correction
of the rates by ISEF and abundance values resulted in an estimated f,,
for CYP2C8 of 0.82, with the other enzymes contributing very little
(Tables 4 and 5). These values and those from inhibition data can be
compared with an estimate of an in vivo value of 0.73 for CYP2CS8,
based on a gemfibrozil DDI study (Table 6). Thus, the main role for
CYP2CS8 was identified by all methods, albeit the inhibition curve
approach yielded the estimate of f,, that was closest (0.73 versus
0.72; Table 6).

Propranolol: Enzyme Kinetics and Reaction Phenotyping. Pro-
pranolol is metabolized by P450-catalyzed oxidations, as well as direct
glucuronidation, thus the determination of fc values required the use of
pooled human hepatocytes to accommodate the glucuronidation reac-
tions. Enzyme kinetics (Supplemental Fig. 8) of three oxidative reac-
tions (4-hydroxylation, 5-hydroxylation, and N-deisopropylation), along
with two glucuronidation reactions (O- and N-glucuronidations), are
listed in Table 1 with estimated fy, values. (There was a fourth oxida-
tive product, 7-hydroxypropranolol, however its fcp value was well un-
der 0.01 and thus it was not measured in subsequent experiments.)
4-Hydroxylation is the dominant pathway (fcp = 0.77). The
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glucuronidation reactions accounted for 18% of metabolism in hepato-
cytes, and this value must be accounted for when estimating f,,, values
for the oxidation pathways when using liver microsomes and rCYPs.
Single point inhibition data suggested a dominating role for CYP2D6
and a minor role for CYP1A2 (Table 3). Full inhibition curves (Fig. 5)
showed roles for CYP1A2 and CYP2D6, as well as for CYP2B6 (in
N-dealkylation only). Estimated f,, values were 0.68, 0.03, and 0.02 for
CYP2D6, CYP1A2, and CYP2B6, respectively. Notably, the minor role
for CYP2B6 was revealed with the data-rich full inhibition curve, but
the single point data for the effect of PPP on propranolol N-desisopro-
pylation did not achieve statistical significance.

Propranolol metabolism was observed in several tCYPs when mea-
suring metabolites with a sensitive HPLC-MS assay (Supplemental
Table 10). Overall, when corrected for ISEF values, few of these enzymes
were estimated to have a meaningful contribution to metabolism. The main
contribution was from CYP2D6, which is in agreement with the inhibition
data, albeit the estimated f,,, value was somewhat lower (0.55; Table 5) and
was within the range of estimated in vivo f, values (Table 6). The lower
CYP2D6 f,,, value estimated from rCYP data as compared with inhibition
data are due to an observable contribution by CYP3A4 (f,, = 0.11), which
was not identified in TAO inhibition experiments in human liver mi-
crosomes. Furthermore, estimates of CYP3A contribution in vivo
range as high as 0.39 from DDI data (Table 6), however, it is impor-
tant to note that these DDI were observed with other drugs that affect
cardiovascular functions (i.e., diltiazem and verapamil), and in one of
those studies there was no effect observed on exposure to the 4-hydroxy
metabolite, which would contradict CYP3A inhibition (since the 4-hy-
droxy metabolite was the major one formed by recombinant CYP3A4).
Thus, the CYP3A4 contribution to propranolol clearance is unclear, but
the CYP2D6 contribution was readily identified.

Risperidone: Enzyme Kinetics and Reaction Phenotyping. In
human liver microsomes, risperidone was metabolized by three routes:
7-hydroxylation, 9-hydroxylation, and N-dealkylation (Fig. 1). For all
three reactions, substrate saturation experiments showed biphasic kinet-
ics (Supplemental Fig. 9). From the summed CL;, data, the fraction of
metabolic clearance progressing through the 7-hydroxy, 9-hydroxy, and
N-dealkylation pathways were calculated at 0.16, 0.67, and 0.17,

Doran et al.

respectively (Table 1). Using data from single concentrations of P450-se-
lective inhibitors, it was shown that risperidone was metabolized mostly
by CYP2D6 and CYP3A4, with minor involvement of CYP2C8 and
CYP2C19 (Table 2). Using the approach of complete inhibition curves
(Fig. 6) and fitting the data to generate the maximum inhibition value
showed that only CYP2D6 and CYP3A4 contribute, with f;;, values of
0.60 and 0.34, respectively (Table 3), which compare favorably to values
estimated from pharmacogenetic and DDI studies (Table 6).

When using reaction rate data from rCYP enzymes, risperidone was
shown to be metabolized by CYP2C8, CYP2C19, CYP2D6, and
CYP3A4 (Supplemental Table 10). Adjusting each reaction rate using
ISEF values (Table 4) and calculating f,,, values for these four enzymes
yielded values of 0.07, 0.01, 0.19, and 0.73 for CYP2C8, CYP2C19,
CYP2D6, and CYP3A4, respectively (Table 5). With this approach,
CYP3A4 is overemphasized at the expense of CYP2D6 and these esti-
mates of f, do not compare favorably with in vivo estimates (Table 6).

Escitalopram: Enzyme Kinetics and Reaction Phenotyping.
Escitalopram is metabolized primarily via two routes at the amine
nitrogen: N-demethylation and N-deamination, with the latter path-
way initially yielding an aldehyde that undergoes rapid oxidation
to a carboxylic acid (Fig. 1). Because of this latter pathway,
the enzyme kinetics were measured in pooled human hepatocytes
(Table 1; Supplemental Fig. 10) to generate fy values of 0.80 and 0.20
for N-demethylation and N-deamination, respectively. Evaluation of in-
hibition data suggested roles for CYP2B6, CYP2CS8, CYP2C19,
CYP2D6, and CYP3A4 (Tables 2 and 3; Fig. 7). For the N-deamination
reaction, inhibition data were generated using pooled human hepa-
tocytes and showed essentially complete inhibition using the
CYP2C19 inactivator esomeprazole. Also observed was a partial
effect on N-demethylation, suggesting a role for CYP2C19 in this
reaction as well. Initial data in human liver microsomes showed little
to no effect of N-benzylnirvanol on escitalopram N-demethylation
(Supplemental Fig. 11). The hepatocyte data showing a role for
CYP2C19 in N-demethylation was aligned with the metabolite profile
data in rCYP2C19 (Supplemental Fig. 5), and illustrates leveraging
the knowledge gained from the initial qualitative rCYP metabolite pro-
filing data when interpreting the inhibition data. The estimated in vivo
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values for CYP2C19 contribution to escitalopram clearance from phar-
macogenetic studies give a wide range of 0.36-0.82 (Table 6) with a mi-
nor contribution from CYP3A and no impact of CYP2D6. Also shown
in Fig. 7 is the inhibition curve generated by TAO, which is readily in-
terpretable, and data can be fit to a simple four-parameter inhibition
curve. Finally, it should be noted that monoamine oxidase inhibitors
were also tested for their effect on escitalopram N-deamination in hu-
man hepatocytes, since a previous report described a role for mono-
amine oxidase in this reaction (Rochat et al., 1998). However, in the
present study no effects of monoamine oxidase inhibitors chlorgyline
(0.1 uM) or selegiline (1 pM) were observed. It is still possible that
monoamine oxidase in extrahepatic tissues contributes to escitalopram
clearance in vivo.

In rCYP enzymes, escitalopram N-demethylation was measurable in
CYP1A2, CYP2C8, CYP2C19, CYP2D6, and CYP3A4, with CYP2D6
catalyzing this reaction at a very high rate relative to the others
(Supplemental Table 10). Only CYP2C19 was able to generate the car-
boxylic acid metabolite. Following correction for ISEF factors for rate
(Table 4), estimations of f,;, values for escitalopram total metabolism
were 0.22, 0.23, 0.47, and 0.08 for CYP2CS8, CYP2C19, CYP2D6, and
CYP3A4, respectively, with the contribution by CYP1A2 less than 0.01
(Table 5). This may overemphasize the CYP2D6 contribution relative
to CYP2C19, since not all of the enzymes may be able to convert an
initial (and undetectable) aldehyde metabolite from N-deamination to
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the carboxylic acid, but several are able to catalyze formation of the
readily detectable N-desmethyl metabolite.

Discussion

The quantitative estimation of the involvement of individual P450
enzymes to metabolic clearance from in vitro data is important in
drug research, as the data can inform the need for clinical drug inter-
action and pharmacogenetic studies. Two orthogonal approaches, ef-
fect of specific inhibitors in human liver microsomes or hepatocytes
and ISEF-corrected metabolism rates in expressed P450 enzymes,
have been recommended in consortia publications and regulatory
guidance documents (Bjornsson et al., 2003; EMA, 2012; Bohnert
et al., 2016; FDA, 2020: https://www.fda.gov/regulatory-information/
search-fda-guidance-documents/in-vitro-drug-interaction-studies-
cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions).
However, these approaches are not perfect. Selective inhibitors are gener-
ally not selective enough, especially when used at single-test concentra-
tions (Lu, et al., 2003; Khojasteh et al., 2011; Nirogi et al., 2015; Doran
et al., 2022). The use of rCYP enzymes can be flawed because different
marker substrates can yield different ISEFs (Siu and Lai, 2017; Lindmark
et al., 2018; Wang et al., 2019; Dantonio et al., 2022). The two methods
can frequently yield f,,, values that are not in agreement. The objective of
the present work was to develop an approach that would yield improved
reaction phenotyping data.

Fig. 7. Inhibition curves for metabolism of escitalo-
pram. (A) Effect of montelukast on N-demethylation in
human liver microsomes. (B) Effect of quindine on
N-deamination in human liver microsomes. (C) Effect
of esomeprazole on N-demethylation in human hepa-
tocytes. (D) Effect of esomeprazole on N-deamination
in human hepatocytes. (E) Effect of troleandomycin on N-
demethylation in human liver microsomes. Orange curves
represent escitalopram metabolism and black curves repre-
sent the positive control reactions for CYP2C8 (amodia-
quine N-deethylation), CYP2D6 (dextromethorphan O-
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Forty-eight drugs were first evaluated in baculosome-expressed rCYP
enzymes using a metabolite profiling approach, and from this set, five
were selected for detailed reaction phenotyping using both rCYPs with
ISEF and selective inhibitors. These five were selected to ensure that
the involvement of different P450 enzymes was evaluated and that they
had commercially available or readily biosynthesized metabolite stand-
ards needed for quantitative bioanalysis. The estimated f,;, values were
compared with those estimated from clinical DDI and pharmacogenetic
studies (Table 6; Fig. 8). Overall, the use of chemical inhibitors using a
full concentration range offered the values of f,,, that were closest to
clinical data. The merits of this, when integrated into a ‘“qualitative-
then-quantitative” reaction phenotyping experimental design (Fig. 9),
are described below.

Baculosome-expressed rCYPs are valuable reagents. Although it was
not the main objective of the study, some interesting observations into
these enzymes can be made from the data in Table 2. As expected, the
P450 enzymes that have been a focus of drug metabolism for decades,
such as CYP3A4, CYP3AS5, CYP1A2, CYP2C8, CYP2C9, CYP2C19,
and CYP2D6, show a high prevalence of ability to metabolize drugs (at

1 1
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least from this set of 48). But there were also some unexpected observa-
tions, such as the high frequency with which some of the less-studied
enzymes, such as CYP1Al, CYP1B1, CYP2J2, CYP2C18, and
CYP3A7, demonstrated an ability to catalyze drug metabolism. Some
of these latter P450s are not highly expressed in the liver or are extrahe-
patically expressed. Also, at present, they do not have well-character-
ized selective inhibitors or marker substrate activities, which makes it
difficult to understand their relative contributions to the in vivo metabo-
lism of any given drug. However, despite the overall value of rCYPs in
identifying the potential for involvement in metabolism, their use in
making quantitative f,,, estimates is limited. For pioglitazone, fluvastatin,
and propranolol, rCYPs with ISEFs yielded values in agreement with
clinical data for their major clearing enzymes CYP2C8, CYP2C9, and
CYP2D6, respectively. However, the contribution of CYP2D6 to risper-
idone metabolism was far underestimated, wherein the low f,,, value of
0.19 would not project the important impact of CYP2D6 expression on
risperidone pharmacokinetics. A similar finding was made for escitalo-
pram and CYP2C19. From examples like these and others (unpublished
data on experimental drug candidates), we conclude that rCYP data
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should not be used quantitatively to project f,, values. The observation
that some ISEF values vary with the P450 marker substrates used to de-
rive them is proposed as a main factor contributing to this problem (Siu
and Lai, 2017; Lindmark et al., 2018; Wang et al., 2019; Dantonio
et al., 2022). Reasons underlying substrate-dependent ISEF values at
the biochemical level are unknown. However, it has been demonstrated
that rCYPs can be useful in an initial qualitative assessment of metabo-
lism, especially when combined with modern methods of metabolite
profiling and identification. By following the formation of metabolites,
rCYP incubations never failed to identify an enzyme that has impor-
tance in drug clearance for all 48 of the drugs evaluated (Fig. 2). In
fact, this approach was too sensitive in many cases, as shown by numer-
ous instances in which a given enzyme demonstrated a capability to
generate metabolites for a drug even when the enzyme has no demon-
strated clinical relevance. But there were no instances of false negatives
where an enzyme important in clearance in vivo failed to generate me-
tabolites. As such, this experiment can offer a good first step in a reac-
tion phenotyping cascade (Fig. 9). Any P450 that demonstrates an
ability to generate metabolites would move on to subsequent evaluation
with inhibitors in liver microsomes (or hepatocytes).

Metabolite Profile in Panel of rP450s (Qualitative)

rP450s Demonstrating
No Formation of
Metabolites (Set C)

) rP450s Demonstrating
Metabolites Detected
Only by HRMS (Set B)

rP450s Demonstrating
Metabolites Detected
by UV/VIS (Set A)

Run Full Inhibition
Curves For Set A P450s
in Pooled HLM
(Quantitative)

Conclusions:
No P450 Involvement

Sum of f, < 0.75

Run Full Inhibition
Curves For Set B P450s
in Pooled HLM
(Quantitative)

Sfeonm Values

Calculate Sum of f,
Values

SfeonmmValues

Sum of f, > 0.75

Conclusions:
1. Report f, for Set A
P450s, and
2. Report Set B P450s as
Contributing to Remaining
Metabolism (1-f,)

fe, Values for Pathways from Either:
(1) InVitro Data or (2) Human ADME

Fig. 9. Overall approach for P450 reaction phenotyping. A qualitative determina-
tion of metabolite profiles is conducted across a panel of individually expressed
P450 enzymes using HPLC-UV-HRMS. Enzymes that yield no discernable me-
tabolites by UV/VIS or HRMS are eliminated from any further consideration.
Those enzymes that demonstrate formation of metabolites detected by UV/VIS
are of greatest focus (Set A). Full inhibition curves are generated in human liver
microsomes using inhibitors to address only Set A enzymes and generate fcontr
values. The fcontr Values are combined with fop values, obtained from either
quantitative metabolite profiles from human metabolism-excretion studies or from
metabolite profile data generated in an appropriate in vitro system, to yield f,,
values. If the sum of f,, values across all pathways exceeds 0.75, then the P450 phe-
notyping is considered complete, and any remaining uninhibited activity (f,, < 0.25)
is attributed to the enzymes that generated metabolites only detectable by HRMS
(Set B). If the sum of f, values is less than (.75, then additional inhibition curves
are generated to yield fconr Values for Set B P450 enzymes. In this latter case, the
collective fi,, values for both Set A and Set B P450 enzymes are reported.

Conclusions:
Report f., for
Set A and B P450s
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P450 inhibitors were evaluated in two ways: single concentration ver-
sus full inhibition curves. Use of single concentrations of inhibitors is
commonly observed in literature reports describing P450 reaction pheno-
typing. A challenge with this lies in delineating a true contribution of a
P450 versus spillover inhibition caused by suboptimal inhibitor selectiv-
ity (Doran et al., 2022). In Table 2, there are several instances of low but
measurable inhibition, even cases where the standard deviation was
lower than the percentage of inhibition. When summed, these small
amounts of inhibition can erode the estimation of f,, values for important
enzymes. However, application of a more rigorous statistical evaluation
(described in Materials and Methods) can eliminate these as artifacts.

To overcome problems of inhibitor spillover we employed a dense
18-22-point inhibition curve design for chemical inhibition experiments
(seen in Figs. 3—7), which permits fitting complex functions to the data
to reliably capture instances of nonselective inhibition. The power in
this design affords a check on the inflection point of the first inhibition
curve to verify agreement with the ICs, for a known marker substrate
activity, and also permits estimation of the maximum inhibition that is
due only to effects on the target enzyme and excludes inhibition
caused by spillover. Fraction metabolized values for the major P450
enzymes involved in the metabolism of the five example drugs were
well-estimated using this approach. Success was realized particularly
for escitalopram and risperidone, where the ISEF approach failed. Em-
ploying the most selective inhibitors is important. Finally, reaction phe-
notyping experimental designs, wherein the effects of inhibitors are
assessed by measuring formation of metabolites, offer greater levels of
sensitivity and granularity because the contribution of each enzyme to
the formation of each metabolite is determined. Furthermore, it should
be appreciated that following metabolite formation is essential for accu-
rate reaction phenotyping of low intrinsic clearance drugs.

From the results of these studies, a “qualitative-then-quantitative”
cascade approach is proposed for reaction phenotyping (Fig. 9). In step
1, a metabolite profile is generated for each rCYP enzyme. Those en-
zymes that yield the largest amounts of metabolites (especially observed
in the UV traces) are selected for evaluation in step 2, which is a full
multipoint inhibition curve for each of the enzymes identified in the first
step. After step 2, if at least 75% of the total clearance is accounted for,
then the study can be considered complete with the f,,, values reported
from the maximum inhibition data, and the remaining f,, (<25%) de-
scribed as being catalyzed by a combination of the remaining P450s ob-
served in step 1 and any other non-P450-mediated clearance. If less
than 75% is accounted for, step 2 is expanded to the other P450s identi-
fied in step 1 that showed less metabolism (including those for which
metabolites were only observed by MS). If an rCYP fails to generate
any metabolites by MS, it can be concluded that the enzyme is not in-
volved in the metabolism at all, since the first step yielded no instances
of false negative outcomes. Such an approach leverages the value in
each of the individual experiment types while avoiding their pitfalls.

In conclusion, a sequential “qualitative-then-quantitative” approach
to P450 reaction phenotyping is proposed as an alternate to the current
standard in-parallel two-orthogonal method approach described in re-
views and guidance documents (Bjornsson et al., 2003; EMA, 2012;
Bohnert et al., 2016; FDA, 2020: https:/www.fda.gov/regulatory-information/
search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-
p450-enzyme-and-transporter-mediated-drug-interactions). The approach
merges metabolite profiling techniques into reaction phenotyping and lever-
ages the best that each of the individual P450 reaction phenotyping tools have
to offer while avoiding confounding factors such as inhibitor spillover and
substrate-dependent ISEFs. Further efforts include investigation into roles for
some of the P450 enzymes that are extrahepatically expressed, along with
continued application of the qualitative-then-quantitative P450 phenotyping
approach to drug candidates.
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SUPPLEMENTAL TABLE 1. Incubation Conditions for Metabolism of Escitalopram, Fluvastatin, Pioglitazone, Propranolol, and Risperidone

in Pooled Human Liver Microsomes.

Escitalopram Fluvastatin Pioglitazone Propranolol Risperidone

Human Liver Microsomes (mg/mL) 0.3 0.3 0.1 0.1 0.3
Substrate Concentration (uM) Inhibition 4 Kinetic 0.01-100 | Kinetic 0.003-300 Inhibition 0.5 Kinetic 0.003-300

Inhibition 0.1 Inhibition 0.3 Inhibition 1
Incubation Volume (mL) Inhibition 0.20 Kinetic 0.30 Kinetic 0.30 Inhibition 0.30 Kinetic 0.30

Inhibition 0.30 Inhibition 0.40 Inhibition 0.30
Incubation Time (min) 15 40 40 10 30
Termination Solvent Acetonitrile Acetonitrile Acetonitrile Acetonitrile Acetonitrile
Termination Solvent Volume (mL) 0.20 0.60 0.40 0.60 0.60
Internal Standard Indomethacin Diclofenac Indomethacin Indomethacin Indomethacin
Internal Standard Concentration (ng/mL) 50 50 50 100 100




SUPPLEMENTAL TABLE 2. Hepatocyte Conditions

Escitalopram Propranolol
Human Hepatocytes (million cells/mL) 0.5 0.1
. Kinetics 0.03-600 Kinetics 0.01-300
Substrate Concentration (M) Inhibition 25

Incubation Volume (mL)

Kinetics 0.12
Inhibition 0.15

Kinetics 0.12

Incubation Time (min) 120 45
Termination Solvent Acetonitrile Acetonitrile
Sample Collection Volume (mL) E} gieb?t?zr?(?? Kinetics 0.08
Termination Solvent Volume (mL) El ﬁ;?&s)l?ozg Kinetics 0.24
Kinetics Terfenadine Diclofenac
Internal Standard Inhibition Indomethacin
5 25

Internal Standard Concentration (ng/mL)

50




SUPPLEMENTAL TABLE 3 rCYP Incubation Conditions

Substrate Fluvastatin
Substrate Concentration (LM) 0.1
Incubation Volume (mL) 0.4
Termination Solvent Acetonitrile
Sampling Volume (mL) 0.04
Termination Solvent Volume (mL) 0.16
Internal Standard Diclofenac
Internal Standard Concentration (ng/mL) 25
Metabolite 5-Hydroxy 6-Hydroxy N-Dealkyl
Enzyme CYP2CS8
CYP2C9 CYPID6 CYP2C9 CYP3A4 CYP2C9

Enzyme Concentration (pmol/mL) 10 100 100 100 100
Incubation Time (min) 60 40 20 60
Substrate Pioglitazone
Substrate Concentration (uM) 0.3
Incubation Volume (mL) 0.4
Termination Solvent Acetonitrile
Sampling Volume (mL) 0.04
Termination Solvent Volume (mL) 0.16
Internal Standard Indomethacin
Internal Standard Concentration (ng/mL) 50
Metabolite 2-Hydroxy 1’-Hydroxy 2’-Hydroxy | 5-Hydroxy
Enzyme CYP2C9

CYP2C8 CYP2C9 CYP1A2 CYP2C19 CYP2D6 CYP2C8 CYP2(B

CYP2C8 CYP3A4
CYP3A4

Enzyme Concentration (pmol/mL) 10 100 10 100 100 10 100
Incubation Time (min) 60 60 60 60 40 60 60




Supplemental Table 3 (continued)

Substrate Escitalopram
Substrate Concentration (M) 0.3
Incubation Volume (mL) 0.4
Termination Solvent Acetonitrile
Sampling Volume (mL) 0.04
Termination Solvent Volume (mL) 0.16
Internal Standard Indomethacin
Internal Standard Concentration (ng/mL) 50
Metabolite N-desmethyl N-Deamination
Enzyme CYP1A2 CYP2C8 CYP2D6 CYP2C19
CYP2C19
CYP3A4
Enzyme Concentration (pmol/mL) 100 10 1 100
Incubation Time (min) 16 60 12 60
Substrate Risperidone
Substrate Concentration (M) 1
Incubation Volume (mL) 0.4
Termination Solvent Acetonitrile
Sampling Volume (mL) 0.04
Termination Solvent Volume (mL) 0.16
Internal Standard Indomethacin
Internal Standard Concentration (ng/mL) 100
Metabolite 9-OH 7-OH N-Dealkyl
Enzyme CYP2C8 | CYP2D6 | CYP3A4 | CYP2C8 | CYP2D6 CYP3A4
CYP2C19 CYP2C19
CYP3A4
Enzyme Concentration (pmol/mL) 100 10 10 100 10 10
Incubation Time (min) 60 20 60 60 20 20




Supplemental Table 3 (continued)

Substrate Propranolol
Substrate Concentration 0.5

(uM)

Incubation Volume (mL) 400

Termination Solvent

Acetonitrile + 1% formic acid

Sampling Volume (mL) 0.04

Termination Solvent 0.16

Volume (mL)

Internal Standard Diclofenac

Internal Standard 25

Concentration (ng/mL)

Metabolite 4-OH 5-OH N-Dealkyl

CYP Enzyme 2B6 | 2C19 | 3A4 | 1A2 | 2D6 | 2C8 | 2C9 | 3A4 | 1A2 | 2D6 | 2C8 | 2B6 | 3A4 | 2C19 | 1A2 | 2D6
2C8 2C9
2C9

Enzyme Concentration 100 100 10 1 0.1 100 | 100 | 100 1 0.1 | 100 | 100 | 10 10 1 0.1

(pmol/mL)

Incubation Time (min) 60 40 20 8 8 60 | 40 | 20 8 8 60 | 40 | 60 40 8 8




SUPPLEMENTAL TABLE 4. HPLC Conditions for Metabolites of Escitalopram, Fluvastatin, Pioglitazone, Propranolol, and Risperidone.

Escitalopram Fluvastatin Pioglitazone Propranolol Risperidone
Column Kinetex C18 Waters Acquity Waters Acquity Kinetex C18 Kinetex C18
HSS T3 BEH C18
Column Dimensions 2.1x50 2.1x100 2.1x50 2.1x50 2.1x100
(mm)
Particle Size (um) 1.7 1.8 1.7 1.7 1.7
Temperature (°C) 20 20 20 50 20
Mobile Phase A 0.1% formic 0.1% formic acid in  0.1% formic acid in 0.1% formic acid in 0.1% Formic acid in
acid in water water water water 10 mM ammonium
acetate in water
Mobile Phase B 0.1% formic 0.1% formic acid on  0.1% formic acid in 0.1% formic acid in 0.1% Formic acid in
acid on acetonitrile acetonitrile acetonitrile acetonitrile
acetonitrile
Flow Rate (mL/min) I 0.5 0.5 0.4 0.55 0.5
Gradient ! Time | %B Time % B Time % B Time % B Time % B
. (min) : (min) (min) (min) (min)
0.00 5 0.00 2 0.00 10 0.00 2 0.00 2
0.50 5 0.25 2 0.50 10 1.00 2 0.50 2
2.00 95 3.50 55 5.50 23 3.20 30 3.00 40
2.50 95 4.50 95 5.60 95 4.00 90 3.10 95
2.60 5 5.00 95 6.20 95 4.80 90 3.50 95
3.00 5 5.10 2 6.21 10 4.85 2 3.51 2
- - 5.50 2 7.21 10 5.15 2 4.00 2

Injection Volume (uL) 10 10 10 10 10




SUPPLEMENTAL TABLE 5. Mass Spectrometer Conditions for Metabolites of Escitalopram, Fluvastatin, Pioglitazone, Propranolol, and
Risperidone.
Escitalopram Fluvastatin Pioglitazone Propranolol Risperidone

Metabolite N-Demethylation  5-Hydroxylation = 2-Hydroxylation N-Dealkylation 9-Hydroxylation

Mass Transition (M/z) 311 > 262 428 > 240 373 > 239 218 > 74 427 > 110

Collision Energy (V) 22 40 36 18 50

Dwell Time (ms) 25 25 50 25 50

Standard Curve Range (nM) 0.25-500 0.25-500 0.4-500 0.25-100 1-500
Metabolite N-Deamination 6-Hydroxylation = 1’-Hydroxylation = 4-Hydroxylation 7-Hydroxylation

Mass Transition (m/z) 311 > 237 428 > 282 373 > 150 276 > 116 427 > 207

Collision Energy (V) -30 26 37 24 38

Dwell Time (ms) 25 25 50 25 40

Standard Curve Range (nM) 0.25-500 0.25-500 0.4-500 0.25-100 1-500
Metabolite - N-Dealkylation 2’-Hydroxylation  5-Hydroxylation N-Dealkylation

Mass Transition (Mm/z) - 352 > 334 373 > 132 276 > 116 220 > 94

Collision Energy (V) - 20 48 24 28

Dwell Time (ms) - 25 50 25 40

Standard Curve Range (nM) - 0.25-500 0.4-500 0.25-100 1-500
Metabolite - - 5-Hydroxylation Glucuronidation -

Mass Transition (M/z) - - 373.0 > 313.0 436.3 > 260.0 -

Collision Energy (V) - - 27 31 -

Dwell Time (ms) - - 50 30 -

Standard Curve Range (nM) - - 0.4-500 0.25-100 -
Internal Standard Indomethacin Diclofenac Indomethacin Indomethacin Indomethacin

Mass Transition (Mm/z) 358 > 139 297 > 216 358 > 139 258 > 139 358 > 139

Collision Energy (V) 22 30 22 22 22

Dwell Time (ms) 25 50 25 50 50




SUPPLEMENTAL TABLE 6. Incubation Conditions for Positive Control Probe Substrates.

CYP Inhibitor Inhibitor Selective Probe Substrate Selective Reaction Protein Incubation

Isoform Concentration Substrate Concentration Monitored Concentration® Time

Range (M) (M) (min)
1A2 Furafylline 0.002-20 Phenacetin 6.0 Acetaminophen 0.03 15
2B6 PPP 0.01-100 Bupropion 18 hydroxybupropion 0.03 15
2C8 Montelukast 0.001-10 Amodiaquine 0.33 N-desethylamodiaquine 0.03 15
2C9 Sulfaphenazole 0.003-30 Diclofenac 1.3 hydroxydiclofenac 0.03 15

2C19 NEB; ZIEZ;?;Z:EOI 06?0012_ 1200 S-Mephenytoin 713 4’0OHmephenytoin ggz 153 g 0
2D6 Quinidine 0.0003-3 Dextromethorphan 0.36 Dextrorphan 0.03 15
3A4/5 TAO 0.01-100 Midazolam 0.42 Midazolam 1'-hydroxylation 0.03 15

*For esomeprazole incubation conducted in HHEPs, protein concentration is in units of million cells/mL; for all other inhibitors incubations were conducted in HLM and protein
concentration units are in mg/mL.



SUPPLEMENTAL TABLE 7. HPLC and Mass Spectrometer Conditions for Positive Control Probe Substrates.

1A2 2B6 2C8 2C9 2C19 2D6 3A4
Column Waters HSS T3 Halo C18 Kinetex C18 Halo C18 Halo C18 Halo C18 Halo C18
Column 50x2.1 2.1x30 50x2.1 2.1x30 2.1x30 2.1x30 2.1x30
Dimensions (mm)
Particle Size (um) 1.8 2.7 1.7 2.7 2.7 2.7 2.7
Temperature (°C) 20 20 20 20 20 20 20
Mobile Phase A 0.1% formic 0.1% formic acid | 0.1% formic 0.1% formic acid 0.1% formic acid in 0.1% formic | 0.1% formic acid in
acid in water in water acid in water in water water acid in water water
Mobile Phase B 0.1% formic 0.1% formic acid | 0.1% formic 0.1% formic acid 0.1% formic acid in 0.1% formic | 0.1% formic acid in
acid in in acetonitrile acid in in acetonitrile acetonitrile acid in acetonitrile
acetonitrile acetonitrile acetonitrile
Flow Rate 0.3 0.5 0.5 0.5 0.5 0.5 0.5
(mL/min)
Gradient Time %B Time %B Time | %B Time %B Time %B Time | %B Time %B
0 2 0 5 0 2 0 10 0 2 0 5 0 10
0.5 2 0.3 5 0.5 2 0.8 10 0.5 2 0.4 5 0.8 10
2 70 1.2 95 2.5 95 1.3 95 1.7 32 1.3 95 1.3 90
2.1 90 1.5 95 3 95 1.8 95 1.9 95 1.8 95 1.8 90
2.5 90 1.6 5 3.1 2 1.81 10 2.2 95 1.9 5 1.85 10
2.55 2 2.1 5 3.5 2 2.2 10 2.25 2 2.4 5 2.3 10
3 2 2.5 2
Injection Volume 10 10 10 10 10 10 10
(uL)
Retention Time 1.24 0.62 1.09 1.79 1.39 1.06 1.23
(min)
Mass Transition 152->110 256>139 3282283 3122266 235.2->150 258.12>201 342.2->324
(m/2)
Collision Energy 22 26 30 20 26 31 30
V)
Internal standard [D-]- [*He]- [*Hs]-N- [PCel-4"- [*H;]4'- [*H;]- [PHa)-
Acetaminophen | Hydroxybupropion Desethyl- Hydroxydiclofenac | Hydroxymephenytoin | Dextrorphan | Hydroxymidazolam
amodiaquine
IS (m/2) 1592115 262->139 333.2->283 3182272 238.2>150 261.1>201 346.2>328




SUPPLEMENTAL TABLE 8. Fraction unbound values of inhibitors in liver microsomes®

Inhibitor Fraction Unbound at Varying Microsomal Protein Concentrations
0.01 mg/mL 0.03 mg/mL 0.1 mg/mL 0.3 mg/mL 1 mg/mL 3 mg/mL
Ketoconazole 0.240 +0.0163°
N-Benzylnirvanol 0.965 £ 0.0874 0.925 £ 0.0341 0.911+£0.0135 0.822 £ 0.0635 0.758 £0.0317 0.490 = 0.0621
Quinidine 0.971 £0.0110 0.964 +0.0136 0.967 +£0.0179 0.864 £ 0.0167 0.789 +0.0300 0.593 +0.0367
Sulfaphenazole 0.949 +£0.118 0.985 £ 0.0294 1.057 £ 0.0409 1.034 £ 0.123 0.949 + 0.0880 0.764 +0.0307
PPP 0.925 £ 0.0557 0.967 £ 0.0349 0.999 +0.0240 0.918 £ 0.0681 0.875 +£0.0389 0.787 £0.0248
Furafylline 0.910+0.189 0.980 + 0.0845 1.004 + 0.0666 0.935+0.111 0.903 £ 0.0738 0.890 +0.0378
Montelukast 0.057 £ 0.026 0.00691 = 0.0015 | 0.00193 £0.0009 | 0.00101 £=0.00040 | 0.000302 +0.00009 | 0.000170 + 0.00001
TAO unbound at all concentrations
"Mean +, N=3

Pketoconazole only used for escitalopram at a liver microsome concentration of 0.3 mg/mL




SUPPLEMENTAL TABLE 9. Inhibitor concentrations used (uM) in single point inhibition experiments.

Substrate

Inhibitor Escitalopram Fluvastatin Pioglitazone Propranolol Risperidone
Furafylline (1A2) 8.1 11.5 8.7 11.5 8.1
PPP (2B6) 8.1 11.5 8.1 11.5 8.1
Montelukast (2C8) 1.87 1.69 0.53 1.69 1.87
Sulfaphenazole (2C9) 8.1 11.5 8.54 11.5 8.1
N-Benzylnirvanol (2C19) 2.67 3.33 2.67 3.33 2.67
Esomeprazole (2C19) 2.96 NA NA NA NA
Quinidine (2D6) 1.2 1.15 0.90 1.15 0.854
TAO (3A4) 18.7 19.7 18.7 19.7 18.7

NA = not applicable.




SUPPLEMENTAL TABLE 10. rCYP Rate Data for Escitalopram, Fluvastatin, Pioglitazone, Propranolol, and Risperidone®

CYP1A2 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP3A4

Escitalopram

N-Demethylation 0.460 (0.12) ND 37.0 (1.3) ND 53.3(1.6) 7970 (380) 21.8 (0.93)

N-Deamination ND ND ND ND 3.47 (0.34) ND ND
Fluvastatin

5- Hydroxylation ND ND ND 237 (12) ND ND ND

6- Hydroxylation ND ND 66.0 (5.3) 190 (11) ND 37.5(1.9) 645 (20)

N-Dealkylation ND ND ND 21.3(1.2) ND ND ND
Pioglitazone

1’-Hydroxylation 49.4 (2.2) ND 238 (3) 14.7 (0.5) 18.0 (0.6) 55.6 (1.7) 3.74 (0.23)

2-Hydroxylation ND ND 25.2(0.4) 13.2 (0.3) ND ND ND

2’-Hydroxylation ND ND 43.5(1.3) ND ND ND ND

5-Hydroxylation ND ND 4.83 (0.20) ND ND ND 30.8 (1.1)
Propranolol

4-Hydroxylation 590 (29.3) 0.0772 (0.0675) 1.43 (0.17) | 0.204 (0.036) | 0.962 (0.145) | 16560 (688) 554 (5.0

5-Hydroxylation 126 (6) ND 0.174 (0.010) | 0.350 (0.022) ND 1458 (80) 0.984 (0.069)

N-Dealkylation 1170 (57) 2.46 (0.13) 0.562 (0.046) | 0.682 (0.039) 137 (8) 1744 (105) 4.52 (0.38)
Risperidone

7-Hydroxylation ND ND 0.861 (0.013) ND 1.12 (0.05) 183 (2) 0.436 (0.051)

9-Hydroxylation ND ND 3.83(0.11) ND 4.82 (0.26) 1310 (9) 126 (5)

N-Dealkylation ND ND ND ND ND ND 115 (36)

"Rate data are expressed in intrinsic clearance terms (v/[S]) and in units of pL/min/nmol P450. Values are mean (SEM). ND = not detected




SUPPLEMENTAL TABLE 11. Unbound ICs, 5 Values (uM) from Multiple Concentration Inhibition Experiments for the Metabolism of
Escitalopram, Fluvastatin, Pioglitazone, Propranolol, and Risperidone™*

Furafylline PPP Montelukast | Sulfaphenazole | N-Benzylnirvanol Quinidine TAO
CYPIA2 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP3A
Escitalopram
N-Demethylation - - 9.66e-005 - 0.0841 (0.0685 - 0.0194 0.677
(1.68e-005 - 0.0997) (0.0128 - (0.388 -
0.000176) 0.0260) 0.967)
N-Deamination - - - - 0.141 (0.111 - - -
0.171)
Positive Control - - 0.000163 - 0.581 (0.426 - 0.0192 1.09
Activity (0.000148 - 0.736) (0.0141 - (0.95 -
0.000177) 0.0244) 1.23)
Fluvastatin
5- Hydroxylation - - - 0.467 (0.445 - - - -
0.489)
6- Hydroxylation - - - 0.380 (0.320 - - - 1.41
0.454) (1.11 -
1.82)
N-Dealkylation - - - 0.488 (0.458 - - - -
0.521)
Positive Control - - - 0.911 (0.875 - - - 3.83
Activity 0.949) (3.42 -
4.35)
Pioglitazone
1’-Hydroxylation - - 9.46e-005 - - - -
(7.96¢-005 -
0.000110)
2-Hydroxylation - - 0.00157 0.129 - - -
(0.00000 - (0.0901 -
0.00325) 0.168)
2’-Hydroxylation - - 0.000555 - - - -
(0.000410 -

0.000700)




5-Hydroxylation - - - - - 2.66
(1.74 -
3.57)
Positive Control - - 0.000126 0.140 - 1.10
Activity (9.32e-005 - | (0.121 -0.159) (0.96 -
0.000158) 1.23)
Propranolol’
4-Hydroxylation - - - - 0.0285 (0.0229 - -
0.0346)
5-Hydroxylation - - - - 0.0398 (0.0328 - -
0.0480)
N-Dealkylation 0.508 (0.328 | 1.46 (0.63 - - - 0.0574 (0.0387 - -
- 0.688) 2.29) 0.0887)
Positive Control 0257 (0.230- | 1.03 (0.96 - - - 0.0245 (0.0204 - -
Activity 0.283) 1.10) 0.0290)
Risperidone
7-Hydroxylation - - - - 0.0152 (0.0125 - -
0.0179
9-Hydroxylation - - - - 0.0171 (0.0112- | 0.0760
0.0229) (0.0365 -
0.116)
N-Dealkylation - - - - - 0.349
(0.186 -
0.513)
Positive Control - - - - 0.00620 0.751
Activity (0.00531 - (0.642 -
0.00709) 0.859)

ICso.5 data are mean (SE).

"Human hepatocyte values for escitalopram and propranolol, all others in HLM.

‘Positive control activities are phenacetin O-deethylation (CYP1A?2), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylase (CYP2C8),
diclofenac 4’-hydroxylase (CYP2C9), S-mephenytoin 4’-hydroxylase (CYP2C19), dextromethorphan O-demethylase (CYP2D6) and midazolam
1’-hydroxylase (CYP3A).



Supplemental Figure 1. HPLC-UV Chromatograms of Metabolite Profiles for Escitalopram (A =
239 nm)
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m/z 297 is the didesmethyl secondary metabolite. m/z 341 represents an addition of oxygen, but
this metabolite was not seen in hepatocyte incubations



Supplemental Figure 1 (continued)
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Supplemental Figure 1 (continued)
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Supplemental Figure 2. HPLC-UV Chromatograms of Metabolite Profiles for
Fluvastatin (A = 304 nm)
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m/z 428 is an additional hydroxy metabolite not observed elsewhere.



Supplemental Figure 2 (continued)
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Supplemental Figure 2 (continued)
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Supplemental Figure 3. HPLC-UV Chromatograms of Metabolite
Profiles for Pioglitazone (A = 264 nm)
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Supplemental Figure 3 (continued)
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m/z 371 is likely a ketone secondary metabolite while m/z 355 is a metabolite likely arises from a

dehydrogenation reaction.



Supplemental Figure 3 (continued)
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m/z 373 is another hydroxy metabolite observed only in CYP3A7 incubations and does not match
any of the hydroxy metabolites observed in human liver microsomes.



Supplemental Figure 3 (continued)
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Supplemental Figure 4. HPLC-UV Chromatograms of Metabolite Profiles for
Propranolol (A =291 nm)
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m/z 234 represents a likely secondary metabolite arising from hydroxylation of the N-dealkyl
metabolite.



Supplemental Figure 4 (continued)
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Supplemental Figure 5. HPLC-UV Chromatograms of Metabolite
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Supplemental Figure 5 (continued)
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Supplemental Figure 6 - Substrate Saturation Plots for Metabolism of Fluvastatin in
Pooled Human Liver Microsomes. Panel A: 5-Hydroxylation; Panel B: 6-Hydroxylation;
Panel C: N-Dealkylation
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Supplemental Figure 7. Substrate Saturation Plots for
Metabolism of Pioglitazone in Pooled Human Liver Microsomes.
Panel A: 1’-Hydroxylation; Panel B: 2-Hydroxylation; Panel C: 2’-
Hydroxylation; Panel D: 5-Hydroxylation
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Supplemental Figure 8. Substrate Saturation Plots for Metabolism of Propranolol in Pooled
Human Hepatocytes. Panel A: 4-Hydroxylation; Panel B: 5-Hydroxylation; Panel C: N-
Dealkylation; Panel D: Glucuronidation. In panel D, the solid line represents one
glucuronidation reaction and the dashed line represents the other.
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Supplemental Figure 9. Substrate Saturation Plots for Metabolism
of Risperidone in Pooled Human Liver Microsomes. Panel A: 9-
Hydroxylation; Panel B: 7-Hydroxylation; Panel C: N-Dealkylation
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Supplemental Figure 10. Substrate Saturation Plots for
Metabolism of Escitalopram in Pooled Human Hepatocytes.
Panel A: N-Demethylation; Panel B: N-Deamination
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Supplemental Figure 11. Inhibition of Escitalopram N-Demethylation by N-Benzylnirvanol in
Human Liver Microsomes. The orange line is the curve for escitalopram N-demethylation and
the black curve is for S-mephenytoin 4-hydroxylase as the positive control.
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