Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Physiologically Based Pharmacokinetic Modeling for Quantitative Prediction of Exposure to a Human Disproportionate Metabolite of the Selective NaV1.7 Inhibitor DS-1971a, a Mixed Substrate of Cytochrome P450 and Aldehyde Oxidase, Using Chimeric Mice With Humanized Liver

Daigo Asano, Koichi Nakamura, Yumi Nishiya, Hideyuki Shiozawa, Hideo Takakusa, Takahiro Shibayama, Shin-ichi Inoue, Tsuyoshi Shinozuka, Takakazu Hamada, Chizuko Yahara, Nobuaki Watanabe and Kouichi Yoshinari
Drug Metabolism and Disposition January 2023, 51 (1) 67-80; DOI: https://doi.org/10.1124/dmd.122.001000
Daigo Asano
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Koichi Nakamura
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yumi Nishiya
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideyuki Shiozawa
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideo Takakusa
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takahiro Shibayama
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shin-ichi Inoue
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tsuyoshi Shinozuka
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takakazu Hamada
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chizuko Yahara
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nobuaki Watanabe
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kouichi Yoshinari
Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

In a previous study on the human mass balance of DS-1971a, a selective NaV1.7 inhibitor, its CYP2C8-dependent metabolite M1 was identified as a human disproportionate metabolite. The present study assessed the usefulness of pharmacokinetic evaluation in chimeric mice grafted with human hepatocytes (PXB-mice) and physiologically based pharmacokinetic (PBPK) simulation of M1. After oral administration of radiolabeled DS-1971a, the most abundant metabolite in the plasma, urine, and feces of PXB-mice was M1, while those of control SCID mice were aldehyde oxidase-related metabolites including M4, suggesting a drastic difference in the metabolism between these mouse strains. From a qualitative perspective, the metabolite profile observed in PXB-mice was remarkably similar to that in humans, but the quantitative evaluation indicated that the area under the plasma concentration-time curve (AUC) ratio of M1 to DS-1971a (M1/P ratio) was approximately only half of that in humans. A PXB-mouse–derived PBPK model was then constructed to achieve a more accurate prediction, giving an M1/P ratio (1.3) closer to that in humans (1.6) than the observed value in PXB-mice (0.69). In addition, simulated maximum plasma concentration and AUC values of M1 (3429 ng/ml and 17,116 ng·h/ml, respectively) were similar to those in humans (3180 ng/ml and 18,400 ng·h/ml, respectively). These results suggest that PBPK modeling incorporating pharmacokinetic parameters obtained with PXB-mice is useful for quantitatively predicting exposure to human disproportionate metabolites.

SIGNIFICANCE STATEMENT The quantitative prediction of human disproportionate metabolites remains challenging. This paper reports on a successful case study on the practical estimation of exposure (Cmax and AUC) to DS-1971a and its CYP2C8-dependent, human disproportionate metabolite M1, by PBPK simulation utilizing pharmacokinetic parameters obtained from PXB-mice and in vitro kinetics in human liver fractions. This work adds to the growing knowledge regarding metabolite exposure estimation by static and dynamic models.

Footnotes

    • Received June 23, 2022.
    • Accepted September 30, 2022.
  • The authors are employees of Daiichi Sankyo Co., Ltd or University of Shizuoka. Funding information: All research was funded by Daiichi Sankyo Co., Ltd with no external funding.

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • dx.doi.org/10.1124/dmd.122.000945.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2022 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 51 (1)
Drug Metabolism and Disposition
Vol. 51, Issue 1
1 Jan 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Physiologically Based Pharmacokinetic Modeling for Quantitative Prediction of Exposure to a Human Disproportionate Metabolite of the Selective NaV1.7 Inhibitor DS-1971a, a Mixed Substrate of Cytochrome P450 and Aldehyde Oxidase, Using Chimeric Mice With …
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

PBPK Modeling of a Human Disproportionate Metabolite

Daigo Asano, Koichi Nakamura, Yumi Nishiya, Hideyuki Shiozawa, Hideo Takakusa, Takahiro Shibayama, Shin-ichi Inoue, Tsuyoshi Shinozuka, Takakazu Hamada, Chizuko Yahara, Nobuaki Watanabe and Kouichi Yoshinari
Drug Metabolism and Disposition January 1, 2023, 51 (1) 67-80; DOI: https://doi.org/10.1124/dmd.122.001000

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

PBPK Modeling of a Human Disproportionate Metabolite

Daigo Asano, Koichi Nakamura, Yumi Nishiya, Hideyuki Shiozawa, Hideo Takakusa, Takahiro Shibayama, Shin-ichi Inoue, Tsuyoshi Shinozuka, Takakazu Hamada, Chizuko Yahara, Nobuaki Watanabe and Kouichi Yoshinari
Drug Metabolism and Disposition January 1, 2023, 51 (1) 67-80; DOI: https://doi.org/10.1124/dmd.122.001000
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Appendix
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
  • Biotransformation of Trastuzumab and Pertuzumab
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics