Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Differential Effects of Clotrimazole on X-Ray Crystal Structures of Human Cytochromes P450 3A5 and 3A4

Mei-Hui Hsu and Eric F. Johnson
Drug Metabolism and Disposition December 2023, 51 (12) 1642-1650; DOI: https://doi.org/10.1124/dmd.123.001464
Mei-Hui Hsu
Department of Molecular Medicine, Scripps Research, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mei-Hui Hsu
Eric F. Johnson
Department of Molecular Medicine, Scripps Research, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eric F. Johnson
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Cytochromes P450 CYP3A5 and CYP3A4 exhibit differential plasticity that underlies differences in drug metabolism and drug-drug interactions. To extend previous studies, CYP3A4 and CYP3A5 were cocrystallized with clotrimazole, a compact ligand that binds to the heme iron in the catalytic center of the active site. Binding studies indicate that clotrimazole exhibits tight binding to CYP3A5 with a binding affinity (Kd) of <0.01 μM like that of CYP3A4. A single clotrimazole is bound to the heme iron in CYP3A4 that triggers expansion of active site cavity that reflects a loss of aromatic interactions between phenylalanine sidechains in the distal active site and increased conformational entropy for the F-F’ connector due to reorientation of Phe-304 to accommodate clotrimazole. In contrast to CYP3A4, the CYP3A5 Phe-304 exhibits an induced fit along with Phe-213 to form edge-to-face aromatic interactions with heme-bound clotrimazole. These aromatic interactions between aromatic amino acids propagate by induced fits with a second clotrimazole residing in the distal active site and a third clotrimazole bound in an expanded entrance channel as well as between the three clotrimazoles. The large, expanded entrance channel surrounded by the C-terminal loop and the F’ and A’ helices in CYP3A5 suggests conformational selection for the binding of clotrimazole due to its large girth, which may also cause the entrance channel to remain open after the binding of the first clotrimazole to the heme iron. The additional binding sites suggest a path for sequential binding of one molecule to reach and bind to the heme iron.

SIGNIFICANCE STATEMENT Clotrimazole binds to the heme iron of CYP3A5 and CYP3A4. In CYP3A5, two clotrimazoles also bind in the distal active site and in an expanded entrance channel. Aromatic interactions between clotrimazoles and phenylalanine sidechains including Phe-304 indicate induced fits for each clotrimazole. In contrast to CYP3A5, displacement of the CYP3A4 Phe-304 rotamer by clotrimazole leads to extensive disruption of phenylalanine interactions that limit the space above the heme, to an expanded active site cavity, and to increased CYP3A4 conformational heterogeneity.

Footnotes

    • Received July 21, 2023.
    • Accepted September 25, 2023.
  • This work was supported by National Institutes of Health National Institute of General Medical Sciences [Grant 5R01 GM031001-41] (E.F.J.). Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by National Institutes of Health (NIH) National Institute of General Medical Sciences (NIGMS) [Grant P30GM133894]. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

  • The authors declare that they have no conflicts of interest with the contents of this article.

  • dx.doi.org/10.1124/dmd.123.001464.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 51 (12)
Drug Metabolism and Disposition
Vol. 51, Issue 12
1 Dec 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Effects of Clotrimazole on X-Ray Crystal Structures of Human Cytochromes P450 3A5 and 3A4
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Clotrimazole Differentially Alters P450s 3A5 and 3A4

Mei-Hui Hsu and Eric F. Johnson
Drug Metabolism and Disposition December 1, 2023, 51 (12) 1642-1650; DOI: https://doi.org/10.1124/dmd.123.001464

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Clotrimazole Differentially Alters P450s 3A5 and 3A4

Mei-Hui Hsu and Eric F. Johnson
Drug Metabolism and Disposition December 1, 2023, 51 (12) 1642-1650; DOI: https://doi.org/10.1124/dmd.123.001464
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Data Availability
    • Authorship Contributions
    • Footnotes
    • ABBREVIATIONS
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Gadoxetate-enhanced MRI and FXR in benign tumours
  • In vitro DDI assessment of peptide analogues
  • Endogenous substrates of rat organic cation transporters
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics