Visual Overview
Abstract
Reduced enzyme activity in hepatocellular carcinoma (HCC) and poor targeting limit the application of enzyme-activating prodrugs, which is also detrimental to the effective treatment of HCC. Here, we investigated whether accelerated blood clearance (ABC) phenomenon occurs in HCC models following repeated injections of PEGylated liposomes (PEG-L), thus inducing prodrug accumulation and activation in the liver and exerting highly effective and low-toxicity therapeutic effects on HCC. First, PEGylated liposomal cyclophosphamide was prepared by solvent injection and characterized. Importantly, preinjection of PEG-L induced the ABC phenomenon and activation of CYP3A in both HCC rats and HCC mice by studying the effects of repeated injections of PEG-L on pharmacokinetics and tissue distribution. Next, the efficacy and toxicity of repeated injections of PEG-L in HCC mice were examined, and our data indicate that repeated injections are administered in a manner that significantly enhances the antitumor effect compared with controls, with little or no toxicity to other organs. To further reveal the pharmacokinetic mechanism of PEG-L repeated administration for the treatment of HCC, the protein expression of hepatic CYP3A and the concentration of cyclophosphamide in the liver and spleen of HCC mice by inhibiting CYP3A were analyzed. These results revealed that inducing CYP3A to accelerate the rapid conversion of prodrugs that accumulate significantly in the liver is a key mechanism for the treatment of HCC with repeated injections of PEG-L. Collectively, this work taps into the application potential of the ABC phenomenon and provides new insights into the clinical application of PEGylated nanoformulations.
SIGNIFICANCE STATEMENT This study revealed that repeated injections of PEGylated liposomes could induce the accelerated blood clearance (ABC) phenomenon characterized by hepatic accumulation and CYP3A activation based on hepatocellular carcinoma (HCC) rats and HCC mice. Furthermore, it was verified that induction of the ABC phenomenon dependent on hepatic accumulation and CYP3A activation could enhance the antihepatocellular carcinoma effects of PEGylated anticancer prodrugs in HCC mice. This elucidated the relevant pharmacokinetic mechanisms and unearthed new clues for solving the clinical application of PEGylated nanoparticles.
Footnotes
- Received August 9, 2023.
- Accepted September 25, 2023.
This work was supported by the National Natural Science Foundation of China [Grants 82003849 and 82073923] and Key project of Natural Science Foundation of Bengbu Medical College (BYKY2019297ZD).
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
↵1X.Z. contributed equally to this work.
↵This article has supplemental material available at dmd.aspetjournals.org.
- Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|