Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

A Physiological-Based Pharmacokinetic Model Embedded with a Target-Mediated Drug Disposition Mechanism Can Characterize Single-Dose Warfarin Pharmacokinetic Profiles in Subjects with Various CYP2C9 Genotypes under Different Cotreatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard C. Brundage and Timothy S. Tracy
Drug Metabolism and Disposition February 2023, 51 (2) 257-267; DOI: https://doi.org/10.1124/dmd.122.001048
Shen Cheng
Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darcy R. Flora
Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allan E. Rettie
Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard C. Brundage
Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Richard C. Brundage
Timothy S. Tracy
Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Warfarin, a commonly prescribed oral anticoagulant medication, is highly effective in treating deep vein thrombosis and pulmonary embolism. However, the clinical dosing of warfarin is complicated by high interindividual variability in drug exposure and response and its narrow therapeutic index. CYP2C9 genetic polymorphism and drug-drug interactions (DDIs) are substantial contributors to this high variability of warfarin pharmacokinetics (PK), among numerous factors. Building a physiology-based pharmacokinetic (PBPK) model for warfarin is not only critical for a mechanistic characterization of warfarin PK but also useful for investigating the complicated dose-exposure relationship of warfarin. Thus, the objective of this study was to develop a PBPK model for warfarin that integrates information regarding CYP2C9 genetic polymorphisms and their impact on DDIs. Generic PBPK models for both S- and R-warfarin, the two enantiomers of warfarin, were constructed in R with the mrgsolve package. As expected, a generic PBPK model structure did not adequately characterize the warfarin PK profile collected up to 15 days following the administration of a single oral dose of warfarin, especially for S-warfarin. However, following the integration of an empirical target-mediated drug disposition (TMDD) component, the PBPK-TMDD model well characterized the PK profiles collected for both S- and R-warfarin in subjects with different CYP2C9 genotypes. Following the integration of enzyme inhibition and induction effects, the PBPK-TMDD model also characterized the PK profiles of both S- and R-warfarin in various DDI settings. The developed mathematic framework may be useful in building algorithms to better inform the clinical dosing of warfarin.

SIGNIFICANCE STATEMENT The present study found that a traditional physiology-based pharmacokinetic (PBPK) model cannot sufficiently characterize the pharmacokinetic profiles of warfarin enantiomers when warfarin is administered as a single dose, but a PBPK model with a target-mediated drug disposition mechanism can. After incorporating CYP2C9 genotypes and drug-drug interaction information, the developed model is anticipated to facilitate the understanding of warfarin disposition in subjects with different CYP2C9 genotypes in the absence and presence of both cytochrome P450 inhibitors and cytochrome P450 inducers.

Footnotes

    • Received August 2, 2022.
    • Accepted October 28, 2022.
  • This work was supported by National Institutes of Health Institute of General Medical Sciences [Grant R01-GM069753] (to T.S.T.) and [Grant R01-GM032165] (to T.S.T.)

  • The authors declare no conflict of interest.

  • ↵1Current affiliation: Metrum Research Group, Tariffville, Connecticut.

  • ↵2Current affiliation: GRYT Health Inc., Rochester, New York.

  • Cheng S., Flora D.R., Tracy T. S., Rettie A.E., Brundage R.C. A physiologically-based Pharmacokinetic (PBPK) Model embedded with a Target-Mediated Drug Disposition (TMDD) mechanism can characterize S-warfarin pharmacokinetic (PK) profiles in subjects with various CYP2C9 genotypes under different co-treatments. American Conference of Pharmacometrics (ACOP) 12.

  • dx.doi.org/10.1124/dmd.122.001048.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 51 (2)
Drug Metabolism and Disposition
Vol. 51, Issue 2
1 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Physiological-Based Pharmacokinetic Model Embedded with a Target-Mediated Drug Disposition Mechanism Can Characterize Single-Dose Warfarin Pharmacokinetic Profiles in Subjects with Various CYP2C9 Genotypes under Different Cotreatments
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Warfarin PBPK Model with TMDD Mechanism

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard C. Brundage and Timothy S. Tracy
Drug Metabolism and Disposition February 1, 2023, 51 (2) 257-267; DOI: https://doi.org/10.1124/dmd.122.001048

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Warfarin PBPK Model with TMDD Mechanism

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard C. Brundage and Timothy S. Tracy
Drug Metabolism and Disposition February 1, 2023, 51 (2) 257-267; DOI: https://doi.org/10.1124/dmd.122.001048
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic enzymes in nintedanib metabolism
  • Mechanism of AO Inactivation by Hydralazine
  • Warfarin PBPK modeling with target binding
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics