Abstract
(-)-Δ9-tetrahydrocannabinol (THC) is the primary pharmacological active constituent of cannabis. 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THC-COOH) are respectively the active and nonactive circulating metabolites of THC in humans. While previous animal studies reported that THC could be a substrate of mouse P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), we have shown, in vitro, that only THC-COOH is a weak substrate of human BCRP, but not of P-gp. To confirm these findings and to investigate the role of P-gp and/or Bcrp in the maternal-fetal disposition of THC and its metabolites, we administrated 3 mg/kg of THC retro-orbitally to FVB wild-type (WT), P-gp−/−, Bcrp−/−, or P-gp−/−/Bcrp−/− pregnant mice on gestation day 18 and estimated the area under the concentration-time curve (AUC) of the cannabinoids in the maternal plasma, maternal brain, placenta, and fetus, as well as the tissue/maternal plasma AUC geometric mean ratios (GMRs) using a pooled data bootstrap approach. We found that the dose-normalized maternal plasma AUCs of THC in P-gp−/− and P-gp−/−/Bcrp−/− mice, and the placenta-to-maternal plasma AUC GMR of THC in Bcrp−/− mice were 279%, 271%, and 167% of those in WT mice, respectively. Surprisingly, the tissue-to-maternal plasma AUC GMRs of THC and its major metabolites in the maternal brain, placenta, or fetus in P-gp−/−, Bcrp−/− or P-gp−/−/Bcrp−/− mice were 28–78% of those in WT mice. This study revealed that P-gp and Bcrp do not play a role in limiting maternal brain and fetal exposure to THC and its major metabolites in pregnant mice.
SIGNIFICANCE STATEMENT This study systematically investigated whether P-gp and/or Bcrp in pregnant mice can alter the disposition of THC, 11-OH-THC, and THC-COOH. Surprisingly, except for Bcrp, which limits placental (but not fetal) exposure to THC, we found that P-gp−/−, Bcrp−/−, and/or P-gp−/−/Bcrp−/− significantly decreased exposure to THC and/or its metabolites in maternal brain, placenta, or fetus. The mechanistic basis for this decrease is unclear and needs further investigation. If replicated in humans, P-gp- or BCRP-based drug–cannabinoid interactions are not of concern.
Footnotes
- Received September 8, 2022.
- Accepted November 16, 2022.
This work was supported by the National Institutes of Health’s National Institute on Drug Abuse [Grant P01DA032507].
The authors declare no conflict of interest.
↵
This article has supplemental material available at dmd.aspetjournals.org.
- Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|