Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Review Article50th Anniversary Celebration Collection Special Section on Mechanism-Based Predictive Methods in Drug Discovery and Development—Minireview

Emerging Roles of Uremic Toxins and Inflammatory Cytokines in the Alteration of Hepatic Drug Disposition in Patients with Kidney Dysfunction

Hiroshi Arakawa and Yukio Kato
Drug Metabolism and Disposition September 2023, 51 (9) 1127-1135; DOI: https://doi.org/10.1124/dmd.122.000967
Hiroshi Arakawa
Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hiroshi Arakawa
Yukio Kato
Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yukio Kato
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Alterations in hepatic drug disposition in patients with kidney disease. Plasma concentrations of uremic toxins and inflammatory cytokines are elevated in kidney dysfunction. Uremic toxins can inhibit the expression of OATs and OCT2 in the kidneys. Uremic toxins can also inhibit and downregulate hepatic pharmacokinetic proteins, including OATP1B and cytochrome P450, in the liver. Uremic toxins can activate macrophages, resulting in the release of inflammatory cytokines that can modulate the hepatic pharmacokinetic proteins. ABC, ATP-binding cassette.

Tables

  • Figures
    • View popup
    TABLE 1

    Effects of uremic toxins on renal and hepatic transporters

    Uremic toxinsTotal CmaxUnbound CmaxOAT1 IC50OAT3 IC50OATP1B1 IC50
    2-Nonenala727 µM (Duranton et al., 2012)0.7 µM (Hsueh et al., 2016)IC50: 19 µM for 6-CF uptake (Hsueh et al., 2016)60 µM for 6-CF uptake (Hsueh et al., 2016)N/A
    4-Decenala650 µM (Duranton et al., 2012)0.7 µM (Hsueh et al., 2016)IC50: 38 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 53 µM for 6-CF uptake (Hsueh et al., 2016)N/A
    3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF)81.1 µM (Fujita et al., 2014)N/AIC50: 79 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 28 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 158 µM for SN38 uptake (Fujita et al., 2014)
    CreatinineN/A1.2 mM (Hsueh et al., 2016)IC50: 14 mM for 6-CF uptake (Hsueh et al., 2016)IC50: 40 mM for 6-CF uptake (Hsueh et al., 2016)IC50: > 10 mM for E13S uptake (Sato et al., 2014)
    Hippuric acid398 µM (Duranton et al., 2012)231 (Duranton et al., 2012)IC50: 31 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 41 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 6.71 mM for SN38 uptake (Fujita et al., 2014)
    6-Hydroxyindole0.227 µM (Masuo et al., 2020)N/AN/AN/AIC50: 16.7 (coincubation)
    IC50: 12.1 (pre- and coincubation) (Masuo et al., 2020)
    Indole 3-acetic acid11.6 µM (Duranton et al., 2012)2.11 (Duranton et al., 2012)IC50: 140 µM for 6-CF uptake (Hsueh et al., 2016)38% inhibition for 6-CF uptake by 250 µM (Hsueh et al., 2016)>3 mM for SN38 uptake (Fujita et al., 2014)
    194 µM for SN38 uptake (Katsube et al., 2017)
    Indoxyl sulfate109 µM (Duranton et al., 2012)15.1 µM (Duranton et al., 2012)IC50: 110 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 270 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 2.29 mM for SN38 uptake (Fujita et al., 2014)
    Indoxyl-β-D-glucuronidea9.49 µM (Duranton et al., 2012)N/AN/AIC50: 670 µM for 6-CF uptake (Hsueh et al., 2016)N/A
    Kynurenic acida0.799 µM (Duranton et al., 2012)N/AIC50: 34 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 23 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 180 µM for E13S uptake (Sato et al., 2014)
    N2,N2-DimethylguanosineN/A1.3 µM (Hsueh et al., 2016)no inhibition for 6-CF uptake by 140 µM (Hsueh et al., 2016)IC50: 140 µM for 6-CF uptake (Hsueh et al., 2016)N/A
    Nonanal0.485 µM (Duranton et al., 2012)0.5 µM (Hsueh et al., 2016)IC50: 22 µM for 6-CF uptake (Hsueh et al., 2016)42% inhibition for 6-CF uptake by 50 µM (Hsueh et al., 2016)N/A
    p-CresolN/AN/AN/AN/AIC50: 4.6 mM for E13S uptake (Sato et al., 2014)
    p-Cresyl sulfateN/A211 µM (Hsueh et al., 2016)IC50: 210 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 200 µM for 6-CF uptake (Hsueh et al., 2016)47% inhibition by 1 mM (Masuo et al., 2020)
    Phenol59 µM (Hsueh et al., 2016)N/A31% Inhibition for 6-CF uptake by 6.4 mM (Hsueh et al., 2016)IC50: 3.1 mM for 6-CF uptake (Hsueh et al., 2016)N/A
    Phenylacetic acidN/A3.5 mM (Hsueh et al., 2016)IC50: 540 µM for 6-CF uptake (Hsueh et al., 2016)IC50: 1.3 mM for 6-CF uptake (Hsueh et al., 2016)N/A
    Uric acid383 µM (Duranton et al., 2012)500 µM (Hsueh et al., 2016)IC50: 2.2 mM for 6-CF uptake (Hsueh et al., 2016)IC50: 670 µM for 6-CF uptake (Hsueh et al., 2016)N/A
    • 6-CF, 6-carboxyfluorescein; E3S, estrone-3-sulfate; N/A, not available.

    • aHighest concentrations of Cmax and unbound Cmax for uremic toxins.

    • View popup
    TABLE 2

    Effects of inflammatory cytokines on the expression levels of drug-metabolizing enzymes and transporters in primary cultured human hepatocytes

    IL-1βIL-2IL-6IFNγTGFβTNFα
    NTCP↓ (mRNA) (Le Vee et al., 2008)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA, protein) (Le Vee et al., 2009)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)↓ (mRNA, protein) (Le Vee et al., 2009)
    OAT2→ (mRNA) (Nguyen et al., 2015)↓ (mRNA) (Le Vee et al., 2009)
    → (mRNA) (Nguyen et al., 2015)
    → (mRNA) (Le Vee et al., 2011)↓ (mRNA) (Le Vee et al., 2009)
    OATP1B1↓ (mRNA, protein) (Le Vee et al., 2008)
    ↓ (mRNA, protein) (Le Vee et al., 2009)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA, protein) (Le Vee et al., 2009)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)↓ (mRNA, protein) (Le Vee et al., 2009)
    OATP1B3↓ (mRNA) (Le Vee et al., 2008)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2009)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)↓ (mRNA) (Le Vee et al., 2009)
    OATP2B1↓ (mRNA) (Le Vee et al., 2008)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2009)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)↓ (mRNA) (Le Vee et al., 2009)
    OCT1↓ (mRNA) (Nguyen et al., 2015)↓ (mRNA) (Le Vee et al., 2009)
    ↓ (mRNA) (Nguyen et al., 2015)
    → (mRNA) (Le Vee et al., 2011)↓ (mRNA) (Le Vee et al., 2009)
    MRP2↓ (mRNA) (Le Vee et al., 2008)
    ↓ (mRNA, protein) (Diao et al., 2010)
    ↓ (mRNA, protein) (Le Vee et al., 2009)
    ↓ (mRNA, protein) (Diao et al., 2010)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)→ (mRNA) (Le Vee et al., 2009)
    ↓ (mRNA, protein) (Diao et al., 2010)
    MRP3↓ (mRNA) (Le Vee et al., 2008)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA), ↑ (protein) (Le Vee et al., 2009)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)→ (mRNA), ↑ (protein) (Le Vee et al., 2009)
    MRP4↓ (mRNA) (Le Vee et al., 2008)↓ (mRNA) (Le Vee et al., 2009)→ (mRNA) (Le Vee et al., 2009)
    BCRP↓ (mRNA) (Le Vee et al., 2008)↓ (mRNA, protein) (Le Vee et al., 2009)↓ (mRNA) (Le Vee et al., 2011)→ (mRNA), ↑ (protein) (Le Vee et al., 2009)
    BSEP↓ (mRNA) (Le Vee et al., 2008)
    ↓ (mRNA), ↑ (protein) (Diao et al., 2010)
    ↓ (mRNA) (Nguyen et al., 2015)
    → (mRNA) (Le Vee et al., 2009)
    ↓ (mRNA), ↑ (protein) (Diao et al., 2010)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)↓ (mRNA) (Le Vee et al., 2009)
    ↓ (mRNA), → (protein) (Diao et al., 2010)
    P-gp→ (mRNA) (Nguyen et al., 2015)↓ (mRNA), → (protein) (Le Vee et al., 2009)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Le Vee et al., 2011)→ (mRNA, protein) (Le Vee et al., 2009)
    CYP1A2↓ (mRNA, protein) (Muntané-Relat et al., 1995)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (protein) (Elkahwaji et al., 1999)↓ (mRNA, protein) (Muntané-Relat et al., 1995)
    ↓ (mRNA) (Dickmann et al., 2011)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA, protein) (Muntané-Relat et al., 1995)
    CYP2A6→ (mRNA) (Kleine et al., 2008)
    CYP2B6→ (mRNA), ↓ (protein) (Aitken and Morgan, 2007)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA, protein) (Aitken and Morgan, 2007)
    ↓ (mRNA) (Dickmann et al., 2011)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA), ↓/→ (protein) (Aitken and Morgan, 2007)↑ (mRNA), ↓ (protein)
    (Aitken and Morgan, 2007)
    → (mRNA), ↓ (protein)
    (Aitken and Morgan, 2007)
    CYP2C8↓ (mRNA) (Aitken and Morgan, 2007)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (protein as CYP2C) (Elkahwaji et al., 1999)↓ (mRNA) (Kleine et al., 2008)
    ↓ (mRNA) (Aitken and Morgan, 2007)
    ↓ (mRNA) (Dickmann et al., 2011)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA) (Aitken and Morgan, 2007)↓ (mRNA) (Aitken and Morgan, 2007)↓ (mRNA) (Aitken and Morgan, 2007)
    CYP2C9→ (mRNA), ↓/→ (protein) (Aitken and Morgan, 2007)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (protein as CYP2C) (Elkahwaji et al., 1999)↓ (mRNA, protein) (Aitken and Morgan, 2007)
    ↓ (mRNA) (Nguyen et al., 2015)
    → (mRNA) (Aitken and Morgan, 2007)↓ (mRNA), ↓/→ (protein) (Aitken and Morgan, 2007)→ (mRNA), ↓ (protein) (Aitken and Morgan, 2007)
    CYP2C19↓ (mRNA) (Aitken and Morgan, 2007)↓ (protein as CYP2C) (Elkahwaji et al., 1999)→ (mRNA) (Aitken and Morgan, 2007)
    ↓ (mRNA) (Dickmann et al., 2011)
    → (mRNA) (Nguyen et al., 2015)
    → (mRNA) (Aitken and Morgan, 2007)↓ (mRNA) (Aitken and Morgan, 2007)→ (mRNA) (Aitken and Morgan, 2007)
    CYP2D6→ (mRNA) (Nguyen et al., 2015)↓ (mRNA) (Dickmann et al., 2011)
    → (mRNA) (Nguyen et al., 2015)
    CYP2E1→ (mRNA) (Nguyen et al., 2015)↓ (protein) (Elkahwaji et al., 1999)→ (mRNA) (Nguyen et al., 2015)
    CYP3A4↓ (mRNA, protein) (Muntané-Relat et al., 1995)
    ↓ (mRNA, protein) (Aitken and Morgan, 2007)
    → (mRNA) (Nguyen et al., 2015)
    ↓ (protein) (Elkahwaji et al., 1999)↓ (mRNA, protein) (Muntané-Relat et al., 1995)
    ↓ (mRNA) (Kleine et al., 2008)
    ↓ (mRNA, protein) (Aitken and Morgan, 2007)
    ↓ (mRNA) (Dickmann et al., 2011)
    ↓ (mRNA) (Nguyen et al., 2015)
    ↓ (mRNA, protein) (Aitken and Morgan, 2007)↓ (mRNA, protein) (Aitken and Morgan, 2007)↓ (mRNA, protein) (Muntané-Relat et al., 1995)
    ↓ (mRNA, protein) (Aitken and Morgan, 2007)
    UGT1A1↓ (mRNA) (Nguyen et al., 2015)↓ (mRNA) (Nguyen et al., 2015)
    • IFNγ, interferon-γ; P-gp, P-glycoprotein; TGFβ, transforming growth factor-β; TNFα, tumor necrosis factor-α.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 51 (9)
Drug Metabolism and Disposition
Vol. 51, Issue 9
1 Sep 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Emerging Roles of Uremic Toxins and Inflammatory Cytokines in the Alteration of Hepatic Drug Disposition in Patients with Kidney Dysfunction
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Review Article50th Anniversary Celebration Collection Special Section on Mechanism-Based Predictive Methods in Drug Discovery and Development—Minireview

Hepatic Drug Disposition in Patients with Kidney Dysfunction

Hiroshi Arakawa and Yukio Kato
Drug Metabolism and Disposition September 1, 2023, 51 (9) 1127-1135; DOI: https://doi.org/10.1124/dmd.122.000967

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Review Article50th Anniversary Celebration Collection Special Section on Mechanism-Based Predictive Methods in Drug Discovery and Development—Minireview

Hepatic Drug Disposition in Patients with Kidney Dysfunction

Hiroshi Arakawa and Yukio Kato
Drug Metabolism and Disposition September 1, 2023, 51 (9) 1127-1135; DOI: https://doi.org/10.1124/dmd.122.000967
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Renal Pharmacokinetics in Patients with Kidney Disease
    • Changes in Drug Disposition in Extrarenal Organs During Kidney Disease
    • Mechanisms Underlying the Functional Changes in Hepatic Proteins During Kidney Disease
    • Biomarkers for Hepatic Drug-Metabolizing Enzymes and Transporters
    • Future Directions
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism-Based Predictive Approaches for Hepatic Clearance
  • Application of Endogenous Biomarkers for Drug Transporters
Show more 50th Anniversary Celebration Collection Special Section on Mechanism-Based Predictive Methods in Drug Discovery and Development—Minireview

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics