CORRECTION TO "CYTOCHROME P450 EXPRESSION AND REGULATION IN CYP3A4/CYP2D6 DOUBLE TRANSGENIC HUMANIZED MICE"

In the above article [Felmlee MA, Lon HK, Gonzalez FJ, and Yu A-M (2008) *Drug Metab Dispos* **36**:435–441], in Table 1, the $K_{\rm m}$ and $V_{\rm max}$ values listed under MEM Formation in female mouse liver microsomes are incorrect. The correct values are now shown in the table below.

TABLE 1

Apparent enzyme kinetic parameters of dextromethorphan metabolism in pooled hepatic microsomes from wild-type and T_g -CYP2D6/CYP3A4 mice aged 3, 5, and 8 weeks (N = 4 in each group)

Values are mean \pm S.E.M. from triplicate experiments. Incubations were performed in 100 mM phosphate buffer, pH 7.4, at 37°C for 5 min. Dextromethorphan concentrations ranged from 0 to 2000 μ M. The rates of DXO and MEM formation were measured by HPLC with fluorescence detection. Michaelis-Menten parameters, $K_{\rm m}$ and $V_{\rm max}$, were estimated by nonlinear regression.

Mouse Liver Microsomes			DXO Formation			MEM Formation		
			K _m	$V_{\rm max}$	$CL_{int} (V_{max}/K_m)$	K _m	$V_{\rm max}$	$CL_{int} (V_{max}/K_m)$
			μM	nmol/min/mg protein	µl/min/mg protein	μM	nmol/min/mg protein	µl/min/mg protein
Male	3 weeks	Wild-type	3.80 ± 0.48	1.19 ± 0.03	313	237 ± 21	2.92 ± 0.12	12.3
		Transgenic	3.60 ± 0.34	3.51 ± 0.06	975	523 ± 38	3.85 ± 0.11	7.36
	5 weeks	Wild-type	3.50 ± 0.46	1.82 ± 0.04	520	503 ± 34	7.68 ± 0.21	15.3
		Transgenic	3.20 ± 0.37	3.54 ± 0.08	1110	534 ± 41	7.06 ± 0.21	13.2
	8 weeks	Wild-type	5.10 ± 0.72	1.17 ± 0.03	229	412 ± 52	2.79 ± 0.16	6.79
		Transgenic	3.10 ± 0.23	2.73 ± 0.03	880	374 ± 36	4.23 ± 0.15	11.3
Female	3 weeks	Wild-type	4.40 ± 0.75	1.35 ± 0.04	307	552 ± 73	4.83 ± 0.25	8.75
		Transgenic	2.50 ± 0.27	2.73 ± 0.05	1090	655 ± 52	3.57 ± 0.11	5.45
	5 weeks	Wild-type	3.70 ± 0.47	2.33 ± 0.05	630	433 ± 46	7.40 ± 0.28	17.1
		Transgenic	3.20 ± 0.43	4.71 ± 0.13	1470	500 ± 54	9.31 ± 0.38	18.6
	8 weeks	Wild-type	4.30 ± 0.46	1.79 ± 0.03	416	354 ± 24	4.54 ± 0.13	12.8
		Transgenic	3.00 ± 0.21	2.79 ± 0.03	930	412 ± 26	4.25 ± 0.12	10.3

The online version has been corrected in departure from the print version.

The authors regret this error and apologize for any inconvenience or confusion it may have caused.