












et al., 2005, 2006). In our assessment of desloratadine metabolism in
hepatocytes from different species (Fig. 3), 3-hydroxydesloratadine
was observed at low levels in mouse, rat, and monkey hepatocytes,
consistent with previously reported in vivo findings (Ramanathan
et al., 2006). However, rabbits, dogs, and humans were able to form
the 3-hydroxy metabolite in incubations at a pharmacologically
relevant concentration (1 mM desloratadine), whereas only rabbits
and humans formed it at the high concentration (10 mM desloratadine).
It is unclear whether rabbits were evaluated as nonclinical metabolism
species during desloratadine development; however, our data suggest
they may be appropriate species to model 3-hydroxydesloratadine exposure.
Formation of 5-hydroxydesloratadine and 6-hydroxydesloratadine was
faster in hepatocytes from all nonclinical species tested compared with
human hepatocytes (Supplemental Fig. 1), consistent with the in vivo
data (Ramanathan et al., 2005, 2006). In this study, formation of
5-hydroxydesloratadine and 6-hydroxydesloratadine was primarily
mediated by recombinant CYP1A1, CYP2D6, and CYP3A4, confirm-
ing previously reported findings (Ghosal et al., 2009). Chemical
inhibition experiments in CHHs confirmed the involvement of CYP3A4
in 5-hydroxydesloratadine formation, and likewise confirmed involve-
ment of both CYP2D6 and CYP3A4 in 6-hydroxydesloratadine
formation (Table 1; Supplemental Fig. 2).
The nonspecific inhibitor 1-ABT markedly inhibited (98%) the

formation of 3-hydroxydesloratadine by CHHs, confirming expect-
ations that this reaction is catalyzed by P450 (Fig. 4A). Marked
inhibition (91%) was also observed with gemfibrozil glucuronide (Fig.
4A). Gemfibrozil glucuronide is an irreversible (mechanism-based)
inhibitor of CYP2C8 and is widely used as an in vitro diagnostic
inhibitor of this enzyme (Ogilvie et al., 2006; Parkinson et al., 2011;
Kazmi et al., 2014b). To confirm CYP2C8 involvement in
3-hydroxydesloratadine formation, a panel of known CYP2C8 inhibitors
or substrates (competitive inhibitors) was evaluated (Fig. 4B)—namely,

montelukast, repaglinide, cerivastatin, clopidogrel glucuronide, and
both gemfibrozil and gemfibrozil glucuronide (Bidstrup et al., 2003;
Walsky et al., 2005; Ogilvie et al., 2006; Tornio et al., 2014). Strong
inhibition of 3-hydroxydesloratadine formation was observed with all
CYP2C8 inhibitors and correlated well with the degree of inhibition in
the metabolism of two CYP2C8 substrates (paclitaxel and amodia-
quine), supporting CYP2C8 as the P450 enzyme responsible for
3-hydroxydesloratadine formation. A comparison of CYP2C8 activity
in nine individual samples of human hepatocytes demonstrated high
correlation (r2 = 0.7–0.9) between 3-hydroxydesloratadine formation
and both amodiaquine N-dealkylation and paclitaxel 6a-hydroxylation
(Fig. 5).
The results presented thus far seem paradoxical. They raise the

following question: If CYP2C8 is the major enzyme responsible
for converting desloratadine to 3-hydroxydesloratadine in human
hepatocytes, based on chemical inhibition and correlation analysis,
why is no 3-hydroxydesloratadine formed by HLMs, HS9s, or
recombinant CYP2C8? We hypothesized that perhaps cellular
integrity or the presence of specific cofactors was critical for
3-hydroxydesloratadine formation. In support of this possibility, we
found that permeabilizing the plasma membrane of hepatocytes with
saponin or completely disrupting the membrane by sonication
greatly reduced 3-hydroxydesloratadine formation (Fig. 6A). Addi-
tion of various cofactors to permeabilized/sonicated hepatocytes
revealed that formation of 3-hydroxydesloratadine could be partially
restored by the addition of both NAPDH and UDP-GlcUA. Modest
recovery was also observed in permeabilized/sonicated hepatocytes
supplemented with only UDP-GlcUA presumably because there was
sufficient endogenous NADPH to support some 3-hydroxy metabolite
formation. Subsequent experiments with HLMs and HS9s (Fig. 6B)
confirmed the requirement of both NADPH and UDP-GlcUA for the
formation of 3-hydroxydesloratadine.

Fig. 5. Correlation between CYP2C8 activity and 3-hydroxydesloratadine formation in individual donor CHHs. As described in Materials and Methods, individual donor
CHHs from nine donors with varying CYP2C8 activity were incubated (1 million cells/ml) with 1 or 10 mM amodiaquine, paclitaxel, and desloratadine for 10 minutes,
30 minutes, and 2 hours respectively.
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These results suggested that, in addition to oxidation by CYP2C8,
glucuronidation plays a key role in the formation of 3-hydroxydesloratadine.
To further explore this possibility, desloratadine was incubated
with recombinant CYP2C8 in the absence or presence of a panel of

recombinant UGT enzymes (with NAPDH and UDP-GlcUA as
cofactors). In the absence of any UGT enzyme, CYP2C8 did not
form 3-hydroxydesloratadine but did so in the presence of UGT2B10
(Fig. 7). These results suggest that desloratadine is glucuronidated by
UGT2B10 and that desloratadine glucuronide, not desloratadine itself, is
the substrate that undergoes 3-hydroxylation by CYP2C8. Furthermore,
the results suggest that the glucuronide moiety introduced by UGT2B10
is cleaved during or shortly after metabolism by CYP2C8
A proposed metabolic scheme for 3-hydroxydesloratadine forma-

tion is shown in Fig. 8. The first step is proposed as formation of
desloratadine N-glucuronide by UGT2B10, followed by hydroxylation
to 3-hydroxydesloratadine N-glucuronide by CYP2C8, with sub-
sequent deconjugation to 3-hydroxydesloratadine. Efforts to isolate
and characterize the proposed intermediary metabolites are currently
underway. An N-glucuronide is proposed as the initial metabolite
because there are no hydroxyl or thiol groups available for direct
conjugation. UGT2B10 is one of two enzymes, the other being
UGT1A4, renowned for their ability to catalyze the N-glucuronidation
of drugs, with UGT2B10 being a high-affinity/low-capacity enzyme
and UGT1A4 being a low-affinity/high-capacity enzyme (Zhou et al.,
2010; Parkinson et al., 2013). Ketotifen, a structural analog of
desloratadine, is known to be N-glucuronidated at the piperidine ring
to a quaternary N-glucuronide by UGT2B10 and UGT1A4. Further-
more, N-glucuronidation of ketotifen is a prominent reaction in rabbits

Fig. 6. Formation of 3-hydroxydesloratadine in saponin-treated or sonicated CHHs followed by addition of NADPH and/or UDP-GlcUA. (A) CHHs (1 million cells/ml)
were either pretreated with 0.01% saponin or probe sonicated followed by addition of 0.1 mM NADPH and/or 1 mM UDP-GlcUA and incubation with 10 mM desloratadine
for 2 hours. (B) Formation of 3-hydroxydesloratadine in subcellular fractions—namely, HLMs (1 mg/ml) and HS9s (5 mg/ml) as assessed over 6 hours with or without 1 mM
NADPH and/or 10 mM UDP-GlcUA.

Fig. 7. Assessment of 3-hydroxydesloratadine formation with a panel of
recombinant UGT enzymes supplemented with recombinant CYP2C8. Thirteen
recombinant UGT enzymes (at 0.125 mg/ml) were assessed for their ability to form
3-hydroxydesloratadine when supplemented with recombinant CYP2C8 (25 pmol/ml)
and 1 mM NADPH with 10 mM UDP-GlcUA, followed by a 2-hour incubation
with 1 or 10 mM desloratadine.
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and humans, the two species whose hepatocytes catalyzed the highest
rate of formation of 3-hydroxydesloratadine (Kato et al., 2013;
Bolleddula et al., 2014). It was previously reported that rabbits may be
a particularly useful species for nonclinical studies of drugs that
undergo N-glucuronidation in humans (Chiu and Huskey, 1998).
However, N-glucuronidation by UGT2B10 on the pyridine moiety of
desloratadine cannot be ruled out and has been shown to occur in the
case of nicotine and cotinine glucuronidation (Murphy et al., 2014).
The ability of CYP2C8 to metabolize a glucuronide conjugate is

well established (Parkinson et al., 2013). For example, whereas the
49-hydroxylation of diclofenac (parent drug) is catalyzed by CYP2C9,
the 49-hydroxylation of diclofenac acyl glucuronide is catalyzed by
CYP2C8 (Kumar et al., 2002). This same pattern—in which the
aglycone (typically a small acidic substrate) is not metabolized by
CYP2C8 (and in some cases is metabolized by CYP2C9), whereas the
glucuronide metabolite (a large acidic substrate) is metabolized by
CYP2C8—has been reported for estradiol 17-O-b-glucuronide and the
acyl glucuronide conjugates of naproxen, the peroxisome proliferator-
activated receptor a agonist 2-[[5,7-dipropyl-3-(trifluoromethyl)-1,
2-benzisoxazol-6-yl]oxy]-2-methylpropanoic acid, and gemfibrozil
(Delaforge et al., 2005; Kochansky et al., 2005; Ogilvie et al., 2006;
Parkinson et al., 2013). In the case of gemfibrozil, the CYP2C8-
mediated hydroxylation of its 1-O-b-glucuronide forms a benzyl

radical intermediate that causes irreversible inhibition of CYP2C8
(Ogilvie et al., 2006; Baer et al., 2009).
The conversion of desloratadine by UGT2B10 to an N-glucuronide

that is subsequently hydroxylated by CYP2C8 is consistent with the
known properties of these enzymes. Nevertheless, the formation of
3-hydroxydesloratadine is unusual because no 3-hydroxylation is detect-
able in the absence of glucuronidation and because the N-glucuronide
is cleaved during or shortly after CYP2C8-dependent hydroxylation.
Interestingly, although 3-hydroxydesloratadine is produced from an
N-glucuronide (formed by UGT2B10 and cleaved after hydroxylation
by CYP2C8), 3-hydroxydesloratadine itself is subsequently converted
to an O-glucuronide (at the 3-hydroxy position) by UGT1A1, UGT1A3,
and UGT2B15 (Ghosal et al., 2004).
It is unclear whether there is any potential for drug–drug interactions

with desloratadine, because it has a large therapeutic safety margin. As
a perpetrator, desloratadine has been shown not to be an inhibitor of
CYP1A2, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 (Barecki et al.,
2001). However, to our knowledge, inhibition of CYP2C8 and
UGT2B10 has not been evaluated, so it is unclear whether desloratadine
could cause any clinically relevant interactions with substrates of these
enzymes. A recent clinical study examining the effect of desloratadine
on montelukast serum levels found no significant difference in
montelukast serum levels in fixed-dose combination with desloratadine

Fig. 8. Proposed metabolic scheme for the formation of 3-hydroxydesloratadine and its glucuronide in human hepatocytes and liver subcellular fractions. The proposed
metabolic pathway for desloratadine metabolism based on this study. The conversion of 3-hydroxydesloratadine to 3-hydroxydesloratadine glucuronide was previously
described by Ghosal et al. (2004).
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(Cingi et al., 2013). All other relevant studies have examined the
pharmacodynamic/pharmacokinetic interaction potential of desloratadine
with CYP2D6 and CYP3A4 substrates, and desloratadine was found to
have limited potential for drug–drug interactions (Gupta et al., 2001,
2004; Banfield et al., 2002a, 2002b). With respect to special populations,
patients with moderate hepatic impairment have been shown to have
elevated levels of desloratadine (2.4-fold increase in area under the curve);
however, it has been reported that 3-hydroxydesloratadine exposure was
similar between hepatically impaired and normal patients (Gupta et al.,
2007).
The pharmacogenetic basis for the 3-hydroxydesloratadine poor

metabolizer phenotype has remained a mystery. It has been reported
that the polymorphism surrounding 3-hydroxydesloratadine formation
occurs in approximately 6% of the general population and at
a frequency of 17% in African Americans, with poor metabolizers
having approximately 6-fold greater systemic exposure than extensive
metabolizers (Prenner et al., 2006). Our results suggest that CYP2C8
and/or UGT2B10 polymorphism may be responsible for the poor
metabolizer phenotype. A large number of CYP2C8 genetic poly-
morphisms have been identified, with CYP2C8*2, CYP2C8*3,
CYP2C8*4, CYP2C8*8, and CYP2C8*14 alleles shown to have
decreased functional activity (Dai et al., 2001; Bahadur et al., 2002;
Hichiya et al., 2005; Gao et al., 2010; Hanioka et al., 2010; Jiang et al.,
2011). However, little is currently known about UGT2B10 poly-
morphisms, although the UGT2B10*2 allele has been shown to
correspond to a functional decrease in nicotine and cotinine glucuronide
formation (Chen et al., 2007). Further studies will be necessary to
establish whether genetic polymorphisms of CYP2C8 and/or UGT2B10
can account for the desloratadine poor metabolizer phenotype.
In summary, the following evidence suggests that the conversion of

desloratadine to 3-hydroxydesloratadine is mediated by CYP2C8 in
conjunction with UGT2B10. First, the formation of 3-hydroxydesloratadine
by human hepatocytes is inhibited by reversible and irreversible
inhibitors of CYP2C8. Second, in human hepatocytes, the sample-to-
sample variation in 3-hydroxydesloratadine formation correlates with
CYP2C8 activity toward amodiaquine and paclitaxel. Third, HLMs and
S9 fractions do not form 3-hydroxydesloratadine unless supplemented
with both NADPH and UDP-GlcUA. Fourth, recombinant CYP2C8
does not form 3-hydroxydesloratadine unless coincubated with
recombinant UGT2B10 and both NADPH and UDP-GlcUA. Finally,
no other pair of recombinant P450 and UGT enzymes converted
desloratadine to 3-hydroxydesloratadine.
We were unable to detect either desloratadine N-glucuronide (formed

by UGT2B10) or 3-hydroxydesloratadine N-glucuronide (the initial
metabolite formed by CYP2C8). These glucuronides appear to be
very unstable, which is a characteristic of certain other N-glucuronides
(Ciotti et al., 1999). Despite this limitation, the identification of CYP2C8
in combination with UGT2B10 in the formation of 3-hydroxydesloratadine
contributes to our understanding of the long-standing mystery surround-
ing the enzymology of 3-hydroxydesloratadine formation in humans,
providing a pathway for future investigation of the genetic basis for the
desloratadine poor metabolizer phenotype.
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