












Fig. 4. Comparisons of simulations and experimental observations for pitavastatin disposition in four different batches of SCHHs: UU113 (A), UU115 (B), UU112 (C), and
UU125 (D). Experimental data are presented as mean 6 S.D. (n = 3). Solid lines represent the simulations. SCHHs (with or without disrupted bile canaliculi) were incubated
with pitavastatin at a concentration of 0.1 mM (UU113), 0.6 mM (UU115), 1 mM (UU112), or 2.5 mM (UU125) for 1–45 minutes, after which intracellular (disrupted bile
canaliculi) or combined intracellular and bile accumulation (intact bile canaliculi) was quantified by UPLC-MS/MS. During the experiments, medium samples were collected
and analyzed for pitavastatin content.
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activity, on the other hand, influenced medium, intracellular, and bile
profiles (Fig. 5) to a larger extent. The influence of NTCP activity on the
time profiles was greatest for batch UU112, in which NTCP was
predicted to contribute the most to hepatic uptake of the four batches
studied. However, the impact of altered NTCP activity was not nearly as
large as that of OATP1B1 (Fig. 5).
Canalicular transport activities of BCRP and MDR1 had minimal

effects on medium and intracellular profiles. They were instead more
important for the accumulation in the bile compartment (Fig. 6). The
basolateral transporter MRP3 did not influence any of the time profiles,
indicating a very minor involvement of active basolateral efflux in
pitavastatin disposition. In all sensitivity analyses, the increase in
transport activity was associated with larger changes in time profiles
than was a decrease. This finding reflects the overlapping function of
the transporters in the uptake and efflux of pitavastatin.
To analyze the sensitivity of the model to parameters other than

transport activities, Kflux and fraction unbound were varied 10-fold above
and below their initial values (Supplemental Fig. S4). The Kflux parameter
did not influence the medium and intracellular profiles but had a small
impact on the biliary profile. The fraction unbound, on the other hand,
greatly influenced medium and intracellular accumulation of pitavastatin.

Discussion

In this study, we have shown that experiments using in vitro systems,
in which each transporter is studied in isolation, can be used to simulate
drug disposition in more complex systems such as SCHHs. The
simulations were performed on an individual level by including the
interindividual variability in transporter abundances.
The bottom-up approach of modeling used herein is less frequently

used than the top-down approach, in which parameters describing the
disposition are estimated by fitting the model to in vitro/in vivo
observations. Although top-down modeling can reveal important
information about the drug being modeled, such as the rate-limiting
step of the elimination, it normally has limited use for drugs, where
observations from hepatocyte or in vivo experiments are lacking. The
bottom-up approach, on the other hand, is readily applicable to early
drug development. The input data on which it depends are kinetic
determinations of transport processes in well-defined in vitro systems
and knowledge of the transporter abundance in the in vitro system in
relation to the more complex system being modeled. This gives the
advantage of being able to estimate the kinetics of the average
individual and, more importantly, of the more extreme individuals,
who are the ones at risk of toxicity or lack of efficacy, by including
interindividual variability in transporter abundances in the model.

The bottom-up approach also has the advantage of revealing the
contribution of each transporter to the hepatic disposition. Transporter
contributions have implications for the clinical importance of reduced
function genetic variants and drug-drug interactions. The hepatic
uptake of pitavastatin was mainly dependent on OATP1B1, with a
contribution of 57%–87% in the four batches of SCHHs. This result is
in agreement with the contribution reported in published studies,
ranging from 32% to 98% of total active uptake (Hirano et al., 2004;
Williamson et al., 2013; Kunze et al., 2014). The high variability in
OATP1B1 contribution may be a result of genetic variations (Niemi
et al., 2011) but could also be a result of hepatocyte isolation and culture
(Ulvestad et al., 2011; Vildhede et al., 2015). The importance of
OATP1B1 for pitavastatin disposition is supported by clinical studies
where associations between OATP1B1 reduced function genetic
variants and increased pitavastatin plasma concentrations are reported
(Ieiri et al., 2007; Oh et al., 2013).
Besides OATP1B1, NTCP has been suggested as an important

transporter in pitavastatin disposition, with a 29% contribution to the
active hepatic uptake (Bi et al., 2013). In our four SCHH simulations,
NTCP contributed to 6%, 9%, 9%, and 22% of total active uptake,
indicating that it can be an important transporter in some hepatocyte
batches, depending on the relative transporter abundance levels.
Of the canalicular transporters, BCRP was the most important,

mediating more than 75% of the biliary efflux in all SCHH batches.
Studies in Bcrp1-deficient mice andMrp2-deficient rats suggest a major
role of Bcrp1 and a minor role ofMrp2 in the disposition of pitavastatin,
respectively (Fujino et al., 2002; Hirano et al., 2005b). Whereas a
similar transporter contribution pattern in humans is possible, species
differences cannot be excluded.
Different culture conditions and substrate concentrations can result in

variable biliary excretion. For quantitative extrapolation to the in vivo
situation, it is therefore important to use standardized protocols that
have been optimized for such purpose (Lee et al., 2010b). In vitro-in
vivo extrapolation was not the scope of this study. Instead, our study
serves as a proof-of-concept for the applicability of the bottom-up
modeling approach undertaken. A limitation of our study was the low
biliary efflux in relation to the high uptake of pitavastatin in our
sandwich cultures, resulting in high relative measurement error for the
derived bile concentrations. This experimental limitation complicated
comparisons of predicted and observed biliary accumulation, and we
could therefore not verify our predictions of the biliary accumulation.
Follow-up experiments using a substrate with higher biliary accumu-
lation could improve the confidence in our predictions of the bile
accumulation by allowing for such comparisons. Nevertheless, our
simulations generally agreed well with experimental observations with
an exception for the combined intracellular and bile accumulation for
batch UU112. The lack of dose proportionality for this batch is,
however, physiologically unlikely, given that the expression of
transporters is comparable to the other batches. Moreover, to recover
the intracellular and bile accumulation observed for UU112, the uptake
transporter capacities would need to be increased several-fold, resulting
in an overprediction of the intracellular accumulation (simulations not
shown). We therefore hypothesize that the high intracellular and bile
accumulation observed for UU112 is an experimental error (e.g., owing
to inefficient washing in the experiment in presence of divalent cations).
The mechanistic model presented herein relies on the following

assumptions: 1) functional activity is directly related to transporter
abundance and is not limited by other factors such as cofactor
concentrations; 2), transporters are independent of each other; 3) all
transporters quantified are active; 4) pitavastatin is not bound to any
considerable extent in the medium compartment; 5) intracellular
metabolism is negligible; 6) pitavastatin is not distributed back into

TABLE 4

Measures of predictive performance for simulations of pitavastatin disposition in
four different batches of sandwich-cultured human hepatocytes (SCHHs)

Sample ID Compartment AFE AAFE

SCHH UU113 Medium 1.10 1.12
Intracellular 1.18 1.26
Intracellular + bile 1.28 1.51

SCHH UU115 Medium 0.95 1.08
Intracellular 0.85 1.19
Intracellular + bile 0.94 1.37

SCHH UU112 Medium 0.90 1.11
Intracellular 0.97 1.27
Intracellular + bile 0.56 1.89

SCHH UU125 Medium 1.05 1.05
Intracellular 0.81 1.33
Intracellular + bile 0.82 1.34

AAFE, absolute average fold error; AFE, average fold error.
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Fig. 5. Impact of altered uptake transporter activities on the simulated time profiles of medium, intracellular, and bile accumulation of pitavastatin for SCHH batch UU112.
The maximal transport rate of each transporter was varied over a 0.1-fold (dotted line) to 10-fold (dashed line) range of the experimental value. The reference simulation is
represented by the solid line.
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the cells from the biliary compartment; and 7) the dynamic pulsing of
bile compartments can be described as a linear release of accumulated
drug.
A linear correlation between transporter function and expression has

been reported for both uptake and efflux transporters in cell models and

membrane vesicles (Miliotis et al., 2011; Kumar et al., 2015). This
finding supports our first assumption of a functional dependence on
transport protein abundance. The transporters may also be considered to
operate independently of each other during the short time frame of the
experiments. Regulatory changes in transport activities, such as after

Fig. 6. Impact of altered efflux transporter activities
on the simulated time profiles of medium, intracel-
lular, and bile accumulation of pitavastatin for SCHH
batch UU112. The maximal transport rate of each
transporter was varied over a 0.1-fold (dotted line) to
10-fold (dashed line) range of the experimental value.
The reference simulation is represented by the solid
line.
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induction of transport protein expression, will occur over longer time
periods than those applied here. Further, changes in protein expression
from culturing the hepatocytes are taken into account by the protein
abundance-dependent scaling factor.
Transporter abundance levels were quantified in crude membrane

fractions. Because canalicular efflux proteins are known to undergo
recycling from intracellular membrane pools (Wakabayashi et al.,
2006), a fraction of the measured protein levels in SCHHs may reflect
transport proteins localized in intracellular compartments rather than in
the plasma membrane, where they are functionally active. Assuming all
transporters are active, although in fact some are localized intracellu-
larly, would cause the model to overpredict the canalicular efflux;
however, pitavastatin efflux was (if anything) underpredicted, which
may indicate that SCHHs depend less on recycling of canalicular
transporters than their in vivo counterpart. The underprediction could
also reflect an involvement of MRP2 in the canalicular efflux. Whereas
we did not detect any MRP2-mediated transport of pitavastatin in our
membrane vesicles, results from other in vitro studies suggest that
MRP2 may transport pitavastatin (Hirano et al., 2005b; Ellis et al.,
2013). In addition, genetic variants of MRP2 have been associated with
altered pitavastatin exposure in healthy volunteers (Oh et al., 2013). In
contrast to the canalicular transporters, the OATP transporters have
been suggested not to undergo recycling from intracellular pools (Roma
et al., 2008).
The assumption that all quantified transporters are functionally active

requires that the transport proteins are oriented correctly in the
membrane, which is not the case for all transport proteins present in
the membrane vesicle preparations given that only a fraction of the
vesicles are oriented inside-out. To take this into account, we corrected
our protein abundance measurements by using an estimated fraction of
inside-out vesicles of one-third (Keppler et al., 1998); however, the
proportion of inverted vesicles varies from batch to batch depending on
preparation techniques. We therefore performed additional simulations
to investigate the sensitivity of our predictions to the finverted parameter.
The parameter affected bile accumulation to a limited extent; hence, our
assumption did not affect the overall results and conclusions. For
substrates whose hepatic disposition is more dependent on canalicular
efflux, on the other hand, this parameter could have a significant impact
on the results. In such cases, finverted should be determined for each
vesicular batch that is used (Loe et al., 1996; Volk and Schneider,
2003).
Pitavastatin is metabolized to a limited extent (Elsby et al., 2012).

Data presented in this manuscript also indicate that the assumption of a
very low nonspecific binding is valid since the measured amount of
pitavastatin in the medium samples matched the amount of drug added
in the experiments. Negligible passive diffusion across the canalicular
membrane is a common assumption when modeling hepatic disposi-
tion; the rationale for this assumption is the stiffness of the apical
membrane with its high content of sphingolipids and cholesterol
(Zegers and Hoekstra, 1998). The description of the dynamic pulsing
of the bile canalicular compartments as a linear function is a
simplification of reality; however, this approach has successfully been
used to describe rosuvastatin disposition in sandwich cultures in a
previous study (Pfeifer et al., 2013) and was hence applied herein.
In summary, this is the first study to model hepatic uptake and efflux

on the detailed level of individual transporters using a bottom-up
approach. With the knowledge of transporter contributions derived
from the model, changes in disposition resulting from genetic variants
or drug-drug interactions are expected to be predicted with higher
precision. Our modeling approach may be expanded to include more
processes, such as metabolism, and can also be applied for a more
deconvoluted parameterization of PBPK models.
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