Special Section on Pediatric Drug Disposition and Pharmacokinetics

Human Intestinal PEPT1 Transporter Expression and Localization in Preterm and Term Infants

Miriam G. Mooij, Barbara E. A. de Koning, Dicky J. Lindenbergh-Korteve, Ytje Simons-Oosterhuis, Bianca D. van Groen, Dick Tibboel, Janneke N. Samsom, and Saskia N. de Wildt

Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)

ABSTRACT

The intestinal influx oligopeptide transporter peptide transporter 1 (PEPT1) (SLC15A1) is best known for nutrient-derived di- and tripeptide transport. Its role in drug absorption is increasingly recognized. To better understand the disposition of PEPT1 substrate drugs in young infants, we studied intestinal PEPT1 mRNA expression and tissue localization across the pediatric age range. PEPT1 mRNA expression was determined using real-time reverse-transcription polymerase chain reaction in small intestinal tissues collected from surgical procedures (neonates and infants) or biopsies (older children and adolescents). PEPT1 mRNA relative to villin mRNA expression was compared between neonates/infants and older children/adolescents. PEPT1 was visualized in infant tissue using immunohistochemical staining. Other transporters [multidrug resistance protein 1 (MDR1), multidrug resistance-like protein 2 (MRP2), and organic anion transporter polypeptide 2B1 (OATP2B1)] were also stained to describe the localization in relation to PEPT1. Twenty-six intestinal samples (n = 20 neonates/infants, n = 2 pediatric, n = 4 adolescents) were analyzed. The young infant samples were collected at a median (range) gestational age at birth of 29.2 weeks (24.7–40) and postnatal age of 2.4 weeks (0–16.6). The PEPT1 mRNA expression of the neonates/infants was only marginally lower (0.8-fold) than the older children (P < 0.05). Similar and clear apical PEPT1 and MRP2 staining, apical and lateral MDR1 staining, and intraepithelial OATP2B1 staining at the basolateral membrane of the enterocyte were detected in 12 infant and 2 adolescent samples. Although small intestinal PEPT1 expression tended to be lower in neonates than in older children, this difference is small and tissue distribution is similar. This finding suggests similar oral absorption of PEPT1 substrates across the pediatric age range.

Introduction

The influx oligopeptide transporter peptide transporter 1 (PEPT1) (SLC15A1) is a member of the solute carrier superfamily and is situated on the apical membrane of the enterocyte. Its expression in the human adult jejunum is at least more than 2–10 times higher than that of other transporters such as those from the ATP-binding cassette transporter family [multidrug resistance protein 1 (MDR1), multidrug resistance–like protein 2 (MRP2), or breast cancer resistance protein] or from the solute carrier family [organic anion transporter polypeptides (OATPs)] (Hilgendorf et al., 2007). In histologically normal intestinal biopsies from 10 adults, PEPT1 was expressed most abundantly in duodenum and ileum with a mean relative mRNA expression of 4 compared with <0.5 in colon (Meier et al., 2007). In six adult intestine organ donors the PEPT1 protein expression accounted for approximately 50% of the total expression of all transporter proteins in the small intestine. In colon, PEPT1 represents 5% of all transporter proteins (Drozdzik et al., 2014).

PEPT1 is best known for its function as a nutrient-derived di- and tripeptide transporter, but may also have a role in (pro)drug transport because it is the most abundant peptide transporter in the gut and drug properties mimicking di- and tripeptides may allow uptake by the peptide transporter (Brandsch, 2013). Its role as intestinal transporter has been demonstrated for several (pro)drugs. In PepT1 (ortholog of human PEPT1) knockout mice, the small intestinal uptake of the prodrug valacyclovir was attributed to 90% of the PepT1 transporter (Yang and Smith, 2013). Consequently, these mice had a delayed Tmax and decreased Cmax of acyclovir (active metabolite of valacyclovir) relative to wild-type mice (Yang et al., 2013). However, in human adults PEPT1 mRNA expression was not correlated with valacyclovir pharmacokinetic parameters, even though in vitro valacyclovir was a PEPT1 substrate (Landowski et al., 2003). This suggests that valacyclovir may not be a PEPT1 substrate in human adults, or that PEPT1 mRNA expression may not correlate to PEPT1 activity. The role of PEPT1 in valacyclovir pharmacokinetics in humans may differ from that in animals and remains to be elucidated. Several β-lactam antibiotics have appeared to be PEPT1 substrates in Caco-2 cells with varying affinities, e.g., cefituben, cyclacillin, cefadroxil, cefaclor, benzylpenicillin, and cephalixin. Their structure resembles the tripeptide structure with additional groups (Brandsch et al., 2008). The angiotensin converting enzyme-inhibitor fosinopril is a PEPT1 substrate; other angiotensin...
converting enzyme inhibitors might be substrates, although this needs to be confirmed (Brandsch et al., 2008).

Most drugs prescribed to children are administered orally. Some PEPT1 substrates are dosed to children even very early in life. Considering the wide age-related variation in the processes affecting oral drug absorption—including gastric pH, gastric motility, and drug metabolizing enzyme activity—age-related changes in membrane transporters are also very likely (Mooij et al., 2012). A previous study by our group Mooij et al. (2014) showed transporter-dependent maturation in gene expression in young infants for MDR1, MRP2, and OATP2B1, but overall data on the intestinal expression of membrane transporters during growth and development are very scarce (Brouwer et al., 2015).

To the best of our knowledge, studies on the development of intestinal PEPT1 in humans are lacking. From a pharmacological point a view, it is important to elucidate the development of PEPT1 expression for known substrates. However, this may also be important for the development of new drugs in which PEPT1 could enhance oral absorption.

PEPT1 developmental changes have been studied in several animal species. A developmental pattern of PEPT1 mRNA and protein expression has been shown in the duodenum, jejunum, ileum, and colon of rats (Shen et al., 2001). In the small intestine of newborn rats the expression has been shown in the duodenum, jejunum, ileum, and colon of rats (Shen et al., 2001). In another study in rats, PepT1 small intestinal mRNA expression was stable from postnatal day 4 until day 21, and then decreased from postnatal day 50 onward (Rome et al., 2002). In neonatal miniature pigs, PepT1-mediated dipeptide (3H-glycylsarcosine) disappearance in the ileal segment was highest in the youngest age group (1 week), but PepT1 expression in postweaned pigs was higher than in sucklings (Nosworthy et al., 2013). These data suggest that in the first weeks of life, intestinal PEPT1 is important for nutritional intake and later for diet transition following weaning.

Comparative mRNA expression of various peptide transporters in mice, rats, and human adults shows a PEPT1 expression in all species, but expression levels varied in relation to that of other peptide transporters (cadherin transporter and PEPT2) (Kim et al., 2007). This suggests that animal data cannot be directly extrapolated to humans and that human studies are needed. To our knowledge expression or activity of PEPT1 in human fetal or pediatric population has not been described thus far, let alone a developmental expression pattern. To better understand the disposition of PEPT1 substrate drugs in neonates and young infants, we aimed to compare intestinal PEPT1 mRNA expression and tissue localization in these age groups with those in older

TABLE 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>IHC</th>
<th>mRNA</th>
<th>Gender</th>
<th>Ethnicity</th>
<th>Diagnosis</th>
<th>Gestational Age at Birth (weeks)</th>
<th>Postnatal Age (weeks)</th>
<th>Nutrition</th>
<th>Pathology Report</th>
<th>Resection Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>NEC And stoma closure</td>
<td>25.3</td>
<td>0.2 and 6.9</td>
<td>EF and PN</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Stoma closure (history of NEC)</td>
<td>30.3</td>
<td>5.7</td>
<td>EF</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Volvulus jejunum, malrotation</td>
<td>39.3</td>
<td>3.9</td>
<td>PN</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Stoma closure (history of NEC)</td>
<td>25.6</td>
<td>16.6</td>
<td>EF</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>Male</td>
<td>Unknown</td>
<td>NEC</td>
<td>30.9</td>
<td>8.9</td>
<td>EF and PN</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>Male</td>
<td>Unknown</td>
<td>Jejunal atresia</td>
<td>35.7</td>
<td>0</td>
<td>PN</td>
<td>Stenosis</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>*</td>
<td>Male</td>
<td>Unknown</td>
<td>NEC in patient with complex congenital hernia repair</td>
<td>33.0</td>
<td>0.9</td>
<td>EF</td>
<td>NEC</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>Female</td>
<td>Caucasian</td>
<td>NEC</td>
<td>26.9</td>
<td>2.7</td>
<td>EF and PN</td>
<td>NEC</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>Male</td>
<td>Unknown</td>
<td>CHD complicated by volvulus and intestinal necrosis after hernia repair</td>
<td>36.9</td>
<td>2.0</td>
<td>EF and PN</td>
<td>NEC</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>*</td>
<td>Female</td>
<td>Caucasian</td>
<td>NEC</td>
<td>26.4</td>
<td>2.0</td>
<td>PN</td>
<td>NEC</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>Male</td>
<td>Unknown</td>
<td>NEC</td>
<td>25.3</td>
<td>3.1</td>
<td>?</td>
<td>Ischemic enteritis</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>*</td>
<td>Female</td>
<td>Caucasian</td>
<td>Stoma closure (history of NEC)</td>
<td>24.7</td>
<td>9.57</td>
<td>PN</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Midgut volvulus</td>
<td>28.1</td>
<td>3.86</td>
<td>PN</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>*</td>
<td>Male</td>
<td>Unknown</td>
<td>Meckel’s diverticulum</td>
<td>40.0</td>
<td>3.1</td>
<td>EF</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Jejunal atresia</td>
<td>38.3</td>
<td>0.1</td>
<td>PN</td>
<td>Stenosis</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Jejunal atresia</td>
<td>38.0</td>
<td>0.1</td>
<td>PN</td>
<td>Small reactive changes</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Jejunal atresia</td>
<td>38.3</td>
<td>0</td>
<td>PN</td>
<td>Reactive changes</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>*</td>
<td>Male</td>
<td>Unknown</td>
<td>Ileum atresia</td>
<td>38.9</td>
<td>0.1</td>
<td>EF</td>
<td>Ileumatsesia, no ileum</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>*</td>
<td>Female</td>
<td>Caucasian</td>
<td>NEC</td>
<td>24.9</td>
<td>1.1</td>
<td>PN</td>
<td>NEC</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>*</td>
<td>Female</td>
<td>Unknown</td>
<td>Stoma closure (history of NEC)</td>
<td>25.6</td>
<td>13.9</td>
<td>EF</td>
<td>Necrotizing enterocolitis and stoma closure</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>*</td>
<td>Male</td>
<td>Caucasian</td>
<td>Crohn’s disease; active</td>
<td>Adolescent</td>
<td>15 years</td>
<td>?</td>
<td>Ileocecal resection</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>*</td>
<td>Female</td>
<td>Caucasian</td>
<td>Ulcerative colitis; active</td>
<td>Adolescent</td>
<td>17 years</td>
<td>?</td>
<td>Ileocecal pouch surgery</td>
<td>Jejunum</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td>Caucasian</td>
<td>Biopsy in case of abdominal complaints; non-IIBD</td>
<td>Adolescent</td>
<td>9 years</td>
<td>?</td>
<td>Normal</td>
<td>Jejunum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>*</td>
<td>Caucasian</td>
<td>Biopsy in case of abdominal complaints; non-IIBD</td>
<td>Adolescent</td>
<td>10 years</td>
<td>?</td>
<td>Normal</td>
<td>Jejunum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>*</td>
<td>Caucasian</td>
<td>Biopsy in case of abdominal complaints; non-IIBD</td>
<td>Adolescent</td>
<td>16 years</td>
<td>?</td>
<td>Normal</td>
<td>Jejunum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>*</td>
<td>Caucasian</td>
<td>Biopsy in case of abdominal complaints; non-IIBD</td>
<td>Adolescent</td>
<td>17 years</td>
<td>?</td>
<td>Normal</td>
<td>Jejunum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHD, congenital hernia diaphragmatic; EF, enteral feeding; IBD, inflammatory bowel disease; NEC, necrotizing enterocolitis; PN, parenteral nutrition.

*Unless noted otherwise.

#Up to 3 days before date of sampling EF or PN.

*available results for subject; ?, unknown nutritional information; —, no pathology report available.
children and adolescents. To describe PEPT1 protein staining in relation to other transporters with known mRNA expression data, we also aimed to detect MDR1, MRP2, and OATP2B1 protein in intestine.

Material and Methods

Tissue Samples. Intestinal tissue samples were obtained surgically at time of resection (neonates/infants/adolescents) or as biopsies during ileocolonoscopies (older children/adolescents: subjects 23–26) (Table 1). For mRNA isolation, postresection, tissue was snap frozen in liquid nitrogen and stored at −80°C. For immunohistochemical analysis, tissue was immediately put in 4% formaldehyde in phosphate-buffered saline and processed to paraffin cubes.

The collection of neonatal/infant intestinal tissue and the use of leftover material were approved by the Central Committee of Research involving Human Subjects (The Hague, Netherlands) (Puiman et al., 2011). The Erasmus MC research ethics board in two other protocols approved collection of intestinal residual tissue from adolescent patients and endoscopy biopsies of older children and adolescents. Informed consent was obtained from all parents/caregivers and children older than 12 years of age for use of leftover tissue and clinical data.

Real-Time Reverse-Transcription Polymerase Chain Reaction. Isolation and cDNA synthesis have been previously described (Mooij et al., 2014). In brief, frozen tissue samples were mechanically homogenized on ice. RNA was extracted using the RNaseasy Mini Kit (Qiagen, Hilden, Germany). To digest genomic DNA remnants, RNA was treated with DNase. The RNA integrity numbers of the samples were analyzed using the 2100 Bioanalyzer (Agilent, Santa Clara, CA), and a value of <0.5 was considered poor quality and reason to discard the sample. The mRNA expression was measured by SYBR Green (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA) quantitative real-time reverse transcription polymerase chain reaction with a 7900 Sequence Detector (ABI Prism, Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA).

Primers were used for PEPT1, villin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and sequences were designed using the Oligo 6.22 software (Molecular Biology Insights Inc., Colorado Springs, CO). The primer sequences were the following: GAPDH forward 5′-CTGGAGTCAACGGATT-3′ and reverse 5′-AACTTCCCTGTTCTCAG-3′; villin forward 5′-TGCAACAACAAC-AAGGACT-3′ and reverse 5′-TCCAAATCGGAAGAAC-3′; and PEPT1 forward 5′-TTGGCCCAAATGCTCA-3′ and reverse 5′-GCCCTGCTTGAATGC-3′. The melting curve was analyzed after every polymerase chain reaction to confirm product specificity. GAPDH and villin mRNA expressions were used as the endogenous control. PEPT1 transcript levels were normalized to villin transcript levels (ratio PEPT1/villin), and relative expression was compared across the age groups (neonates/young infants versus children/adolescents).

Immunohistochemistry (IHC). Intestinal sections were dewaxed for IHC, and endogenous peroxidases were quenched with 3% H2O2 in methanol for 20 minutes. Antigens were retrieved using Pepsin (0.1% in 0.01 N HCL) pretreatment in citrate buffer (10 mM, pH 6.0) was used to retrieve antigens. In the case of MRP2, pepsin (which is similar to PEPT1) pretreatment was used. Primary antibodies (mouse anti-MDR1 and mouse anti-MRP2) were obtained from EMD Millipore (Billerica, MA), and rabbit anti-OATP2B1 was obtained from Abnova (Taipei City, Taiwan). PEPT1 staining intensity was microscopically scored by two independent observers (low 1, moderate 2 or high 3).

Statistical Analysis. Data are presented as median and range, unless indicated otherwise. Group comparison (neonates/young infants and older children/adolescents) was made using the nonparametric Mann-Whitney U test. Within the neonates/young infants group, the association between postmenstrual age (gestational plus postnatal age) and PEPT1 mRNA expression was assessed using Spearman’s rho correlation. All statistical analyses were performed using GraphPad Prism software (version 5.00.2, La Jolla, CA) and IBM SPSS Statistics software (SPSS Statistics for Windows, version 21.0, IBM, Armonk, NY). The level of significance was set at P < 0.05.

Results

Descriptive Results. Twenty-six samples (n = 20 neonates/infants, n = 2 children, and n = 4 adolescents) were collected (Table 1). The ages of the young infants ranged from gestational age at birth [median (range) 29.2 weeks (24.7–40)] to postnatal age [2.4 weeks (0–16.6)]. The main reasons for resection were stoma closure [in patients with history of necrotizing enterocolitis (n = 5), current necrotizing enterocolitis (n = 6), and intestinal atresia (n = 5)]. Other reasons for resection were intestinal volvulus (n = 3) and Meckel’s diverticulum (n = 1). Samples of two children (9 and 10 years old) and two adolescents (16 and 17 years old), from whom frozen biopsy tissue was available for mRNA, underwent endoscopy for suspicion of inflammatory bowel disease, and were previously classified as histologically normal. The two samples for IHC were collected from two other children; one underwent ileocolic resection (age 15 years, history of Crohn’s disease, active disease at time of surgery) and the other underwent ileoanal pouch surgery (age 17 years, history of ulcerative colitis, active disease at time of surgery).

mRNA was analyzed in samples from which snap frozen tissue was available, i.e., 17 young infant, 2 pediatric, and 2 adolescent samples. IHC was performed on samples from which paraffin-embedded tissue was available, i.e., 12 young infant and two adolescent samples (Table 1). GAPDH mRNA strongly correlated with villin mRNA (n = 21, r = 0.6182, P < 0.01). One sample was excluded due to low mRNA expression of villin and GAPDH, suggesting loss of enterocytes. Twenty samples remained for mRNA expression analysis.

Nutritional intake up to 3 days before date of sampling (surgery or biopsy) was fully enteral in six patients, parenteral nutrition was given in nine patients, and four patients received both enteral and parenteral feeding. Data on nutritional intake were lacking in seven subjects. No information on concomitant medications was available.

PEPT1 Gene Expression. PEPT1 mRNA was detected in all 20 samples. The relative intestinal PEPT1 mRNA expression (PEPT1/villin) in young infants slightly varied (0.15-fold) (Fig. 1). In the neonatal/infant group the PEPT1 expression was 0.8-fold lower than in
the older age group ($P = 0.01$), with median relative mRNA expressions of 0.80 (range 0.77–0.92) and 1.02 (1.01–1.04), respectively. In the neonatal/infant group postmenstrual age was not correlated with PEPT1 mRNA expression ($p = 0.453$, $P = 0.078$).

Presence of PEPT1 Protein in Enterocytes. PEPT1 staining was present at the apical membrane in the brush border of the enterocyte in all but one sample (Fig. 2). This sample did not show clear villin and was also excluded from PEPT1 mRNA analysis for low villin and GAPDH mRNA expression levels. PEPT1 apical localization was similar in neonatal and adolescent intestinal samples. No PEPT1 staining was detected in goblet cells, most likely due to the artificial effect of enlargement of goblet cells during the process of paraffin embedding. No staining was observed at the basolateral membrane or at the tight junctions. Microscopically, PEPT1 staining intensity was variable among samples. Median PEPT1 staining was high in neonatal and infantile samples (median 3, range 1–3), and low in the two adolescent samples (both 1).

Presence of MDR1, MRP2, and OATP2B1 Protein in Enterocytes. MDR1 staining was visible at the apical and lateral surfaces of the enterocyte (Fig. 3). The lateral MDR1 staining is clearly visible in Fig. 4. OATP2B1 staining was present in intraepithelial at the basolateral membrane (Fig. 3). MRP2 was localized only in the brush border at the apical surface (Fig. 3). Specific transporter staining was present in all neonatal, infantile, and adolescent samples.

Discussion

PEPT1 mRNA and protein expressions were immediately found in neonatal and young infant intestinal tissues postnatally. The PEPT1 mRNA expression in young children was slightly lower than in older children, although the clinical relevance of this difference is probably negligible. This study is the first to demonstrate intestinal gene expression of the PEPT1 transporter across the pediatric age range. The gene expression of PEPT1 in neonatal intestine samples was confirmed by immunohistochemical staining showing protein PEPT1 expression in the brush border of the enterocyte. Localization of PEPT1 in the apical part along the brush border of villus epithelial cells was comparable with staining in human adolescents (this study) and adults, rat, and mice (Groneberg et al., 2001; Hussain et al., 2002; Ziegler et al., 2002; Laforenza et al., 2010). Based on the clear developmental expression patterns of intestinal drug-metabolizing enzymes and hepatic transporters, with (in general) low expression at birth and increasing expression with postnatal age, we anticipated lower PEPT1 transporter expression in neonates (Brouwer et al., 2015). However, our results suggest slightly lower PEPT1 expression and similar localization as in adolescents. Hence, the uptake of PEPT1 substrates in neonates and young infants is likely not to be affected by growth and maturation, and therefore dose adjustments for PEPT1 activity do not seem necessary. Nevertheless, adjustment of drug dosing of PEPT1 substrates may be needed in young children for other reasons, e.g., if the drug is metabolized or renally cleared, which may result in age-related changes in disposition.

Stable mRNA expression of small intestinal MDR1 from neonatal age onward was also found in other studies (Fakhoury et al., 2005; Miki et al., 2005; Mizuno et al., 2014; Mooij et al., 2014). In a previous study, MRP2 mRNA expression in the small intestines was also stable during infant age, but OATP2B1 expression in neonates was about three times higher than in adults (Mooij et al., 2014). This suggests that intestinal membrane transporters show stable or higher expression during childhood and that a developmental expression might occur before birth. These findings are supported by our IHC data, which show clear localization of PEPT1 and the other transporters studied. Immunohistochemical staining of MDR1, MRP2, and OATP2B1 was done to compare the localization of PEPT1 in relation to the other transporters. MDR1 was stained at the apical border of the enterocyte, similar to MDR1 staining in 59 duodenal biopsies from infants up to 7 years of age and from fetuses from a gestational age of 16 and 20 weeks (van Kalken et al., 1992; Fakhoury et al., 2005). MRP2 apical staining matches staining in human colorectal cancer tissue as well as intestinal tissue from horse, rabbits, and rats (Mottino et al., 2000; Van Aubel et al., 2000; Tydén et al., 2010), and intraepithelial OATP2B1 staining at the basolateral enterocyte border was similar to staining in human colonic biopsies from adults (Kleberg et al., 2012). The localization corresponds to the function of MDR1, MRP2, and PEPT1 in facilitating uptake of substrates in the enterocyte, whereas OATP2B1 facilitates excretion from the enterocyte to blood (Klaassen and Aleksunes, 2010).

Our data do not contradict previous data from juvenile animal studies. In rats, PepT1 expression was increased on days 3–5 after birth, after which it rapidly decreased and then increased at the time animals were weaning (Shen et al., 2001). If we would extrapolate these data to neonates, we would expect a PepT1 elevation several days after birth, and time of weaning might be translated to infant age at the time of introducing food next to breastfeeding of formula. The slightly higher PEPT1 expression in older children and adolescents than in young infants might be compared with weaned rats from the animal study. Still, a clinical impact of slightly lower infantile PEPT1 expression is questionable.

PEPT1 has been studied in relation to feeding and nutrition (Spanier, 2014). Interestingly, the PEPT1 transporter expression seems sensitive to nutritional status. In adult short-bowel syndrome patients, small intestinal and colonic mRNA expression of PEPT1 was upregulated compared with healthy controls (Ziegler et al., 2002). Studies in several animal species have further explored the impact of nutrition on intestinal PEPT1 expression. After maternal overnutrition during pregnancy (but not after maternal undernutrition), PepT1 mRNA expression was significantly increased in jejunum of newborn or weaned piglets (Cao et al., 2015). However, our results suggest slightly lower PEPT1 expression in neonates (Brouwer et al., 2015). In a previous study, MRP2 mRNA expression in the small intestines was also stable during infant age, but OATP2B1 expression in neonates was about three times higher than in adults (Mooij et al., 2014). This suggests that intestinal membrane transporters show stable or higher expression during childhood and that a developmental expression might occur before birth. These findings are supported by our IHC data, which show clear localization of PEPT1 and the other transporters studied. Immunohistochemical staining of MDR1, MRP2, and OATP2B1 was done to compare the localization of PEPT1 in relation to the other transporters. MDR1 was stained at the apical border of the enterocyte, similar to MDR1 staining in 59 duodenal biopsies from infants up to 7 years of age and from fetuses from a gestational age of 16 and 20 weeks (van Kalken et al., 1992; Fakhoury et al., 2005). MRP2 apical staining matches staining in human colorectal cancer tissue as well as intestinal tissue from horse, rabbits, and rats (Mottino et al., 2000; Van Aubel et al., 2000; Tydén et al., 2010), and intraepithelial OATP2B1 staining at the basolateral enterocyte border was similar to staining in human colonic biopsies from adults (Kleberg et al., 2012). The localization corresponds to the function of MDR1, MRP2, and PEPT1 in facilitating uptake of substrates in the enterocyte, whereas OATP2B1 facilitates excretion from the enterocyte to blood (Klaassen and Aleksunes, 2010).

Our data do not contradict previous data from juvenile animal studies. In rats, PepT1 expression was increased on days 3–5 after birth, after which it rapidly decreased and then increased at the time animals were weaning (Shen et al., 2001). If we would extrapolate these data to neonates, we would expect a PepT1 elevation several days after birth, and time of weaning might be translated to infant age at the time of introducing food next to breastfeeding of formula. The slightly higher PEPT1 expression in older children and adolescents than in young infants might be compared with weaned rats from the animal study. Still, a clinical impact of slightly lower infantile PEPT1 expression is questionable.
et al., 2014). In contrast, maternal protein restriction in rats also led to higher duodenal PepT1 mRNA expression in 3- and 16-week-old offspring. Irrespective of feeding, PepT1 mRNA expression in 16-week-old rats was higher than in 3-week-old rats (Pinheiro et al., 2013). In another study in adult rats on a protein-rich diet, PepT1 mRNA and protein expressions as well as transporter activity were increased (Shiraga et al., 1999). In low-birth-weight piglets colonic PepT1 activity (measured by flux of cephalexin) was increased after high- instead of normal-protein formula feeding (Boudry et al., 2014). The effects of feeding and nutrition may, in part, explain the observed interindividual variability in PEPT1 gene expression in young infants in the present study. Unfortunately, the available nutritional data were too diverse and partially lacking to test this hypothesis. Moreover, IHC is not the preferred method to quantify the observed changes. Other approaches such as western blots are more informative, but tissue was lacking to perform this analysis.

Several hormones (insulin, leptin, and growth hormone) appear to induce PEPT1 activity in Caco-2 cells (Thamotharan et al., 1999; Buyse et al., 2001; Alteheld et al., 2005). Also, dexamethasone was shown to enhance PepT1 activity in Xenopus oocytes and mice; however, to our knowledge human data are lacking (Rexhepaj et al., 2009). In our cohort, a large proportion of premature neonates have very likely been exposed prenatally to betamethasone as a routine for the prevention of respiratory distress syndrome in imminent premature birth. Unfortunately, informed consent was lacking to retrieve prenatal corticosteroid use by the mother from the medical charts. Hence, our data should be interpreted with caution, taking into account a potential effect of prenatal corticosteroid exposure on the observed intestinal PEPT1 expression.

Several limitations of this study should be addressed. First, most samples were obtained during the first few weeks of life, and pediatric samples after the age of 4 months up to 9 years are lacking. Therefore, the expression in this age range is still unknown. Second, variability in our samples might be due to comedication, nutritional differences, disease, or extent of inflammation. Still, most samples were obtained during surgery of stoma closure, and therefore the intestinal tissue can beFig. 3. Age and MDR1, OATP2B1, and MRP2 protein localization in enterocyte. Immunohistochemical detection of MDR1 (A–D), OATP2B1 (E–H), and MRP2 (I–L) in paraffin-embedded intestinal samples: pediatric intestinal sample (A, E, I) and negative control (B, F, J); intestinal sample from adolescent (C, G, K) and negative control (D, H, L). Apical and lateral MDR1 staining, intraepithelial OATP2B1 staining at the basolateral membrane, and apical MRP2 staining in the enterocyte. Black arrows indicate transporter detection, gray arrows indicate artifacts.

Fig. 4. MDR1 protein localization in enterocyte. Immunohistochemical detection of MDR1 in paraffin-embedded intestinal samples: 40× magnification of pediatric intestinal sample (A) and negative control (B). Clear apical and lateral MDR1 staining (black arrows). Gray arrows indicate nonspecific signal.
expected to be relatively normal. Third, variability might be due to genetic polymorphisms in the SLC15A1 gene, causing a change in PEPT1 expression. However, thus far no polymorphism has been proven to be clinically relevant, and therefore we did not genotype our samples (Anderle et al., 2006).

In conclusion, although small intestinal PEPT1 expression was slightly lower in neonates than in older children, this difference is small and tissue distribution is similar. Therefore, this finding suggests similar oral absorption of PEPT1 substrates across the pediatric age range.

Acknowledgments
The authors thank J. Hagoort for editing support, and A. Gasiewska, J. Dunk, and M. Malepaard for collecting intestinal tissue samples.

Authorship Contributions
Participated in research design: Mooij, de Koning, Samsom, Tibboel, de Wildt.
Conducted experiments: Mooij, de Koning, Lindenbergh-Kortleve, Simons-Oosterhus, van Groen, de Wildt.
Contributed new reagents or analytic tools: Samsom.
Performed data analysis: Mooij, de Wildt.
Wrote or contributed to the writing of the manuscript: Mooij, Samsom, van Groen, Tibboel, de Wildt.

References
Yang B and Smith DE (2013) Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice. Drug Metab. Dispos. 41:608–614.

Address correspondence to: Dr. Sasakia N. de Wildt, Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Wytemaweg 80, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands. E-mail: s.dewildt@erasmusmc.nl