Special Section on Pediatric Drug Disposition and Pharmacokinetics

Predicting Stereoselective Disposition of Carvedilol in Adult and Pediatric Chronic Heart Failure Patients by Incorporating Pathophysiological Changes in Organ Blood Flows—A Physiologically Based Pharmacokinetic Approach

Muhammad Fawad Rasool, Feras Khalil, and Stephanie Läer

Department of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine University, Düsseldorf, Germany (M.F.R., F.K., S.L.); and Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan (M.F.R.)

Received December 8, 2015; accepted April 7, 2016

ABSTRACT

Chronic heart failure (CHF) is a systemic low perfusion syndrome resulting from impairment in the pumping function of the heart. The decrease in blood supply to body organs can potentially affect the pharmacokinetics (PK) of the drugs being administered. Carvedilol is administered as a racemic mixture and undergoes extensive stereoselective first pass metabolism. For such a drug, the pathophysiological changes occurring in CHF can have a profound impact on PK, and thus the resulting pharmacodynamic response, of both enantiomers. The aim of the current work was to predict stereoselective disposition of carvedilol after incorporating the pathophysiological changes in CHF into a whole-body physiologically based PK model using Simcyp, and to scale that model to pediatric CHF patients on a physiologic basis to investigate whether the same changes in the adult model can also be adopted for children. The developed model has successfully described PK of carvedilol enantiomers in healthy adults and in patients after the incorporation of reduced organ blood flows, as seen by the visual predictive checks and the calculated observed/predicted ratios for all PK parameters of interest. In contrast to adults, pediatric patients up to 12 years of age were better described without the reductions in organ blood flow, whereas older pediatric patients were better described after incorporating organ blood flow reductions. These findings indicate that the incorporated blood flow reductions in the adult model cannot be directly adopted in pediatrics, at least for the young ones; however, to draw definite conclusions, more data are still needed.

Introduction

Chronic heart failure (CHF) is a systemic low perfusion syndrome resulting from impairment in the pumping function of the heart, leading to a decrease in the blood supply to the body organs and having a potential to affect the pharmacokinetics (PK) of administered drugs (Ogawa et al., 2013; Yancy et al., 2013). In CHF, the reduced blood flows to the gastrointestinal tract, the peripheral tissues, as well as the liver and the kidneys can affect the drug absorption, distribution, metabolism, and elimination (ADME) (Berkowitz et al., 1963; Zelts et al., 1975; Sica, 2003; Ogawa et al., 2013). These reductions in the organ blood flows are associated with the severity of disease (Leith et al., 1984). The New York Heart Association (NYHA) functional classification of heart failure (NYHA class) is used for categorizing heart failure patients with respect to severity of disease, starting from compensated, mild (NYHA I) to decompensated, severe (NYHA IV) CHF (Criteria Committee of the New York Health Association, 1994). In compensated heart failure, there is no significant impact on PK of the administered drugs, whereas ~50% reduction in clearance (CL) of drugs has been observed in decompensated CHF (NYHA III and IV) (Ogawa et al., 2013). The organ blood flow reductions in heart failure can be correlated with NYHA class of the patients, and hence can be used to understand and predict the PK of drugs being administered in patients with heart failure.

Racemic drugs are composed of enantiomers that can differ greatly in their PK and pharmacodynamic properties (Birkett, 1989). The PK differences between the enantiomers are mainly due to differences in absorption and disposition that can lead to variations in their systemic concentrations and hence can influence the concentration-effect relationships. The pharmacokinetics of the drugs being administered are essential to understand the pharmacodynamic response, which in turn is necessary to understand the treatment outcomes in heart failure patients. The ADME processes are influenced by various factors, including age, sex, and severity of disease. The developed model has been used to investigate the impact of pathophysiological changes in CHF on the PK of carvedilol enantiomers. The model was validated using clinical data from healthy adults and patients after the incorporation of reduced organ blood flows. The model was then scaled to pediatric CHF patients to investigate whether the same changes in the adult model can also be adopted for children. The developed model has successfully described PK of carvedilol enantiomers in healthy adults and in patients after the incorporation of reduced organ blood flows, as seen by the visual predictive checks and the calculated observed/predicted ratios for all PK parameters of interest. In contrast to adults, pediatric patients up to 12 years of age were better described without the reductions in organ blood flow, whereas older pediatric patients were better described after incorporating organ blood flow reductions. These findings indicate that the incorporated blood flow reductions in the adult model cannot be directly adopted in pediatrics, at least for the young ones; however, to draw definite conclusions, more data are still needed.

AABBREVIATIONS: ADME, absorption, distribution, metabolism, and elimination; AUC_{0-\infty}, area under the systemic drug concentration-time curve from time 0 to infinity; BCS, Biopharmaceutics Classification System; C_{max}, maximal systemic drug concentration; CHF, chronic heart failure; CL, clearance; CL/F, CL after the oral application; CL_{int}, total hepatic intrinsic CL; CL_{perm}, permeability CL; EM, extensive metabolizer; F, bioavailability; f_{a}, fraction absorbed; F_{b}, fraction of drug escaping the hepatic metabolism; f_{u,unbound}, unbound fraction of the drug in the enterocyte; NYHA, New York Heart Association; PBPK, physiologically based PK; P_{tiss,mucosa}, human jejunal permeability; P-gp, P-glycoprotein; PK, pharmacokinetics; PM, poor metabolizer; Q_{b}, hepatic blood flow; Q_{v}, villous blood flow; ratio_{Obs/Pred}, observed/predicted ratio.
relationship (Tucker and Lennard, 1990). Because some of the enantiomers show stereoselective disposition, any pathophysiological condition that can affect their CL can have a profound impact on their exposure and efficacy. Carvedilol is a racemic mixture of two enantiomers, with S-enantiomer having both α1-receptor–blocking and β-adrenoreceptor–blocking activities, whereas R-enantiomer is more selective toward α1-receptor–blocking activity (Neugebauer et al., 1990). Both enantiomers undergo extensive stereoselective first-pass metabolism through CYP enzymes (CYP2D6, CYP1A2, CYP2C9, CYP3A4, and CYP2E1) and UGT enzymes (UGT1A1, UGT2B4, and UGT2B7) (Oldham and Clarke, 1997; Ohno et al., 2004; Takekuma et al., 2012), with reported absolute bioavailability (F) of 31.1% for R-carvedilol and 15.1% for S-carvedilol (Neugebauer et al., 1990). Because CYP2D6 is the main metabolic enzyme that is involved in the metabolism of both enantiomers and is more selective toward the overall disposition of R-carvedilol, the decrease activity of this enzyme in poor metabolizers (PMs) may result in higher systemic concentration of R-carvedilol and hence an increase in α-blockade, which can cause acute blood pressure reduction and increased incidence of orthostatic hypotension. In comparison with extensive metabolizers (EMs) of CYP2D6 (Zhou and Wood, 1995). Because carvedilol is used in the management of CHF and it undergoes extensive stereoselective first-pass metabolism, the organ blood flow reductions occurring in CHF can significantly affect its ADME.

A physiologically based PK (PBPK) model incorporating reduced hepatic and renal blood flows has been used previously to predict PK of racemic carvedilol in adult and pediatric CHF patients (Rasool et al., 2015). However, the reductions in blood flow to limbs, adipose, skin, and muscle tissues, which can additionally affect the drug distribution and hence the plasma concentration of the drug, were not yet incorporated in the previously reported carvedilol-CHF model (Rasool et al., 2015). Keeping in mind that carvedilol is administered as a racemic mixture of R and S enantiomers, which have ~twofold difference in their F, the organ blood flow reductions occurring in CHF can affect the disposition of both in a stereoselective fashion. The differences in the exposures of R- and S-carvedilol will influence the expected pharmacodynamic response and may potentially lead to adverse drug reactions. A PBPK model that incorporates all the reported relevant blood flow reductions occurring in CHF can be used to predict stereoselective disposition of carvedilol in CHF patients. Furthermore, a developed and evaluated PBPK model with clinical data in adult CHF patients can be scaled to pediatrics on physiologic basis by using a population-based ADME simulator.

The main objective of this work was to develop a PBPK drug-disease model capable of predicting stereoselective disposition of carvedilol in CHF patients after incorporating the relevant organ/tissue blood flow changes and to evaluate it with the available clinical data in adult and pediatric CHF patients.

Materials and Methods

Modeling Platform

The population-based PBPK simulator, Simcyp version 14.1 (Simcyp, Sheffield, UK), was used in developing a whole-body PBPK model.

Modeling Strategy

A PBPK model was developed by adopting a systematic model-building strategy (Khalil and Laer, 2014), starting with the literature search for screening of drug-specific input parameters and clinical PK data to be used in model development. This was followed by incorporation of these data into the simulator and selection of system parameters for running predictions in virtual populations and the final evaluation of the developed model with the comparison of predicted results with the observed clinical trial data. To avoid the complexity associated with the oral drug absorption, initial predictions were performed after i.v. drug application and all the drug-specific parameters that can potentially influence drug disposition, such as in vivo CL and contributions of various metabolic enzymes (CYPs and UGTs), were optimized. After successful evaluation of the i.v. predictions with the observed data, the previously selected parameters are kept constant and other additional drug-specific parameters that can affect drug absorption process, such as permeability and fraction unbound of the drug in the enterocyte, are selected or optimized. Among the seven PK data sets (two i.v. and five oral) in healthy adults, three data sets (one i.v. and two oral) were used for model building, remaining data sets were used for model verification, and all the data sets were used for model evaluation. After evaluation of developed model in healthy adults, pathophysiological changes in organ blood flows occurring in CHF were incorporated to predict ADME of carvedilol enantiomers in adult CHF patients. After successful evaluation of developed CHF model with the observed data, it was scaled to pediatrics on a physiologic basis by using the pediatric module of Simcyp. To see the impact of reduced organ blood flows on the model predictions in pediatric CHF patients, simulations were performed in duplicate, that is, with and without incorporating reductions in organ blood flows.

All of the predictions were performed by creating a virtual population with same demographics as in the original trial by keeping the age range, proportion of females, fluid intake, fasting/fed states, and, where applicable, same genotypic frequencies. In adults, all the predictions were performed by creating a virtual population of 100 individuals for every PK data set. In pediatrics, the initial simulations were performed in the entire age range, including the young adult, without stratifying them in different age groups, by creating a virtual population of 1000 individuals within the age range of 0.12–19.3 years. This was followed by simulating pediatric patients in different age groups by creating a virtual population of 100 individuals for every age group. The workflow for the development of PBPK model can be seen in Fig. 1.

PBPK Model Parameterization

After undergoing an extensive literature search, relevant in vivo and in vitro drug- and population-specific data were selected for completing the model parameterization. The final model input parameters are summarized in Table 1. The detailed parameterization of various drug- and disease-specific components used in the final PBPK model is given below.

Absorption

To predict oral drug absorption, the advanced, dissolution, absorption, and metabolism model was used (Jamei et al., 2009). The human jejunal permeability (P_{eff,man}) of R-carvedilol was predicted using in vitro Caco-2 permeability (P_{app}) input data after calibrating it with reference value of atenolol within Simcyp (Tian et al., 2012). For S-carvedilol, the P_{app,man} was optimized and adjusted manually after sensitivity analysis to get a good visual fit with the observed clinical data. The model P_{eff,man} values for R- and S-carvedilol were 3.9 × 10^{-4} (cm/s) and 1.6 × 10^{-4} (cm/s), respectively. The predicted absorbed fractions (f_{a}) of R- and S-carvedilol were 0.98 and 0.85, respectively, which are in accordance with carvedilol having a high permeability and belonging to Biopharmaceutics Classification System (BCS) class II. Additionally, the unbound fractions of R- and S-carvedilol within the enterocytes (f_{u,ent}) were predicted using Simcyp. Although some reports suggest a possible role of P-glycoprotein (P-gp) in carvedilol disposition (Kaijser et al., 1997; Gießmann et al., 2004), active transport processes is considered to be significant only when carvedilol is given concomitantly with other P-gp substrates (Alba et al., 2005). Furthermore, carvedilol is considered to be a strong inhibitor and not a good substrate to P-gp (Wessler et al., 2013); taking this information into consideration, no active transport data were incorporated in the developed PBPK model.

Distribution

A perfusion limited whole-body full PBPK model was used for predicting enantiomeric distribution of carvedilol. The volumes of distribution at steady state and the tissue to plasma partition coefficients for R- and S-carvedilol were predicted by using Poulin and Theil method with the Bierzhkovskiy correction (Berezkho’vs’kiy, 2004).
Elimination

Due to absence of relevant metabolic enzyme-specific data that can support and predict the reported enantiomer-specific carvedilol CLs, the intrinsic CLs of metabolic enzymes involved in R- and S-carvedilol CL were back calculated from their respective i.v. CL using the retrograde model for enzyme kinetics in Simcyp (Neugebauer et al., 1990; Cubitt et al., 2011; Salem et al., 2014). To calculate the total hepatic intrinsic CL (CL_{int}), the adult i.v. CL, known fractions of hepatic and renal CL, the fraction of unbound drug (fu), the blood to plasma drug ratio, and the hepatic blood flow were used as input parameters. The predicted hepatic CL_{int} was further divided and assigned to different CYP enzymes, on the basis of available evidence regarding fractional contributions of these enzymes. The CL_{int} not being assigned to any CYP enzyme was used as additional drug CL in the program. The hepatic intrinsic CL was predicted using the well-stirred liver model (eq. 1), as follows:

$$CL_{int} = \frac{Q_H \times CL_H}{fu_B} \times \left(\frac{Q_H}{CL_H} - 1\right)$$

The fractional contributions of CYP enzymes involved in metabolism of R- and S-carvedilol were obtained from available evidences in the published reports (Oldham and Clarke, 1997; Giessmann et al., 2004; Sehrt et al., 2011). It is stated that CYP2D6 is the major metabolic enzyme involved in carvedilol CL with some minor contributions from CYP1A2, CYP2C9, CYP2E1, and CYP3A4. The 74% of total R-carvedilol CL is dependent on CYP2D6, whereas other CYP enzymes have a minor role in its disposition, 50% of total S-carvedilol CL is attributed to CYP2D6, and other metabolic enzymes may have an important role in its overall disposition (Zhou and Wood, 1995; Oldham and Clarke, 1997; Sehrt et al., 2011). In healthy adults, glucuronidation accounts for 20–23% of total carvedilol CL (Neugebauer and Neubert, 1991) and three UGT isoforms, UGT1A1, UGT2B4, and UGT2B7, are involved in its metabolism (Ohno et al., 2004). The contributions of UGT1A1, UGT2B4, and UGT2B7 are reported to be about 30%, 25–40%, and 30–45% for R-carvedilol, and 12–20%, 15–26%, and 60–65% for S-carvedilol, respectively (Takekuma et al., 2012).

Taking into account the above-mentioned information, 80% of total carvedilol CL was assigned to the CYP enzymes (R-carvedilol: 74% CYP2D6, 2% CYP1A2, 2% CYP2C9, 1% CYP3A4, and 1% CYP2E1, and S-carvedilol: 50% CYP2D6, 10% CYP1A2, 10% CYP2C9, 5% CYP3A4, and 5% CYP2E1) using retrograde model, and remaining 20% was assigned to UGT enzymes, which was predicted as additional CL in the program. The UGT-enzyme contributions were optimized manually to achieve good agreement with the observed clinical data. The final values of different CL parameters used in the developed PBPK model are shown in Table 1.

The hepatic CL was predicted by using well-stirred liver model using eq. 2 (Wilkinson and Shand, 1975):

$$CL_H = \frac{Q_H \times fu_B \times CL_{int,H}}{Q_H + fu_B \times CL_{int,H}}$$

The reductions in hepatic blood flow (Q_H) occurring in CHF were incorporated into the model for predicting CL of carvedilol enantiomers in CHF patients. The fraction escaping the gut wall metabolism (FG) was predicted using eq. 3:

$$FG = \frac{Q_{Gut}}{Q_{Gut} + fu_{Gut} \times CL_{int,Gut}}$$

where fu_{Gut} is the unbound fraction of the drug in the enterocyte, $CL_{int,Gut}$ intrinsic CL in the gut, and Q_{Gut} is a hybrid term predicted by using villous blood flow (Q_{villi}) and the permeability CL (CL_{perm}), which is measured from the effective permeability of the compound. Q_{Gut} is calculated by using eq. 4:

$$Q_{Gut} = \frac{Q_{villi} \times CL_{perm}}{Q_{villi} + CL_{perm}}$$

The oral bioavailability was predicted by using eq. 5:

$$F = fu \times F_p \times F_h$$
where f_a is the fraction of drug absorbed, F_r is the fraction of drug that escapes metabolism in the gastrointestinal tract, and F_s is the fraction of drug that escapes the hepatic metabolism.

Pediatric PBPK Model

When the developed PBPK was able to predict ADME of both R- and S-carvedilol in adult healthy and CHF patients, it was scaled to pediatrics on a physiologic basis using the pediatric module of Simcyp. This module includes a wide variety of relevant age-specific physiologic and anatomic parameters that facilitate the pediatric scaling of drug CL on a physiologic basis. These parameters include the age-related changes in total body composition, plasma protein binding, blood volume, organ blood flows, and abundance of different metabolic enzymes (Johnson and Rostami-Hodjegan, 2011). In pediatric module, the renal binding, blood volume, organ blood flows, and abundance of different metabolic enzymes (including age-related changes in total body composition, plasma protein binding, blood volume, organ blood flows, and abundance of different metabolic enzymes) were used as input in retrograde model simulation of enzyme kinetics. The quantified fractional decrease was, 0.78, 0.55, and 0.63 of normal blood flow in mild, moderate, and severe CHF patients (Leithe et al., 1984). Furthermore, the changes in blood flow to limbs can affect the drug distribution, as the blood flow to the limbs also supplies skin, adipose, muscle, and bone (Lee et al., 1993). The quantified fractional reduction in limb blood flow was 0.57, 0.44, and 0.28 of normal limb blood flow in mild, moderate, and severe CHF patients (Leithe et al., 1984).

The NYHA functional classification system for CHF can be directly correlated with the reported reductions in different organ blood flows, by categorizing mild CHF patient in NYHA class II, moderate CHF patient in NYHA class III, and severe CHF patient in NYHA class IV (Leithe et al., 1984; Criteria Committee of the New York Health Association, 1994). All of these organ/tissue blood flow reductions were incorporated within the simulated virtual populations by decreasing the cardiac output to these organs within Simcyp. In CHF patients there is hepato-splanchnic congestion, affecting the passive drug diffusion that results in decreased migration of drug from the intestinal lumen into systemic circulation, which is depicted as decrease in f_a of the drug (Sica, 2003). Furthermore, the gastrointestinal absorption of drugs having low solubility like carvedilol (0.01 mg/mL, BCS II) is more sensitive to CHF-associated changes occurring in gut blood flow (Ogawa et al., 2014). Because in the developed model the reduction in blood flow to gut was accounted for by reducing the Q_{H} (both arterial and portal) and to account for decrease in Q_{int} with severity of CHF, the predicted Q_{out} (eq. 4) value due to its dependence on Q_{int} was reduced in accordance with the reduction in hepatic blood flow.

Keeping in mind the reliance of NYHA functional classification system on assessment of physical activity in CHF patients and difficulty of assessing physical activity in CHF patients and difficulty of assessing physical activity (Leithe et al., 1984), the NYHA functional classification system for CHF can be directly correlated with the reported reductions in different organ blood flows, by categorizing mild CHF patient in NYHA class II, moderate CHF patient in NYHA class III, and severe CHF patient in NYHA class IV (Leithe et al., 1984; Criteria Committee of the New York Health Association, 1994). All of these organ/tissue blood flow reductions were incorporated within the simulated virtual populations by decreasing the cardiac output to these organs within Simcyp.

Blood Flow Changes to Different Organs/Tissues in Heart Failure

The blood flow to liver and kidney decreases with increasing severity of heart failure, and it has been quantified previously (Leithe et al., 1984). The quantified fractional reduction in blood flow was 0.76, 0.54, and 0.46 of normal hepatic flow in mild, moderate, and severe CHF patients, whereas the reduction in renal blood flow was not linear when moving from moderate to severe CHF, as the reported fractional decrease was, 0.78, 0.55, and 0.63 of normal blood flow in mild, moderate, and severe CHF patients (Leithe et al., 1984). Furthermore, the changes in blood flow to limbs can affect the drug distribution, as the blood flow to the limbs also supplies skin, adipose, muscle, and bone (Lee et al., 1993). The quantified fractional reduction in limb blood flow was 0.57, 0.44, and 0.28 of normal limb blood flow in mild, moderate, and severe CHF patients (Leithe et al., 1984).

The NYHA functional classification system for CHF can be directly correlated with the reported reductions in different organ blood flows, by categorizing mild CHF patient in NYHA class II, moderate CHF patient in NYHA class III, and severe CHF patient in NYHA class IV (Leithe et al., 1984; Criteria Committee of the New York Health Association, 1994). All of these organ/tissue blood flow reductions were incorporated within the simulated virtual populations by decreasing the cardiac output to these organs within Simcyp.
PK/Clinical Data

Healthy and Adult Patients with CHF. MEDLINE database was searched for screening and identification of PK studies of R- and S-carvedilol in healthy adults and CHF patients with known demographic information and reported systemic drug concentration-time profiles. As a result of the search, systemic drug concentration-time data from five different clinical studies in healthy adults (4 studies and 36 subjects) and CHF patients (one study, 10 patients with NYHA III and 10 patients with NYHA IV, 4 PK data sets) were used in the adult model development and evaluation (Neugebauer et al., 1990; Spahn et al., 1990; Zhou and Wood, 1995; Tenero et al., 2000; Behn, 2001). These studies provided a total of 11 data sets (7 data sets in healthy and 4 data sets in CHF patients) (Table 2). Each PK data set used for model development and evaluation represents a mean or median observed concentration-time profile after i.v. or oral doses of R- and S-carvedilol. Among the data sets used, one was provided by the author (Behn, 2001) and the rest were scanned from the publications’ figures (Neugebauer et al., 1990; Spahn et al., 1990; Zhou and Wood, 1995; Tenero et al., 2000) using the “digitizer” tool in software OriginPro version 9.0 (OriginLab, Northampton, MA). CYP2D6-specific genotype data were available in two clinical studies (Zhou and Wood, 1995; Behn, 2001).

Pediatric Patients with CHF. One clinical PK data set, including 15 pediatric CHF patients and one young adult with known age, gender, height, and weight, CYP2D6 genotype, dose, Ross score, and measured systemic drug concentration-time profiles, was used (Table 3) (Behn, 2001). The age of the patients ranged from 43 days to 19.3 years (average: 6.7 years) and they received a 0.09 mg/kg dose of oral R- and S-carvedilol. The pediatric patients were divided into different age groups, that is, infant (1 month–1 year), young child (2–6 years), children (6–12 years), and adolescents (12–18 years), according to guidelines set by World Health Organization (http://archives.who.int/eml/expcmchildren/Items/PositionPaperAgeGroups.pdf).

Model Evaluation. The evaluation of PBPK model was performed by visual predictive checks and comparison of observed and predicted PK parameters. The visual predictive checks were performed by overlaying the observed systemic drug concentration-time profile on the median predicted values along with the minimum/maximum, 5th and 95th percentiles of the predictions.

The PK parameters were compared by performing a noncompartmental analysis for each observed PK profile and its corresponding predicted value minimum/maximum, 5th and 95th percentiles of the predictions. An increase in the mean observed concentration and AUC0-∞ under the systemic drug concentration-time curve from time 0 to the last measured concentration and AUC0-∞ were compared to see whether there is any significance difference that can impair the results. The ratios(Obs/Pred) for area under the systemic drug concentration-time curve from time 0 to the last measured concentration and AUC0-∞ for all the clinical data sets were comparable (Supplemental Table 1).

Because the developed model was used to simulate PK of R- and S-carvedilol in both adult and pediatric populations and as reported in most PBPK model base studies (Johnson et al., 2006; De Buck et al., 2007; Li et al., 2012; Khalil and Laer, 2014), a twofold error range was used for evaluation of observed and predicted PK parameters.

Moreover, to identify any systemic error associated with predictions of R- and S-carvedilol, population predicted versus observed population plots with a twofold error range were used.

Results

Healthy Adults

The model predictions after i.v. and oral application in healthy adults were in good agreement with the observed data at all administered dosages of 12.5 mg i.v. and 6.4–50 mg oral racemic carvedilol (Fig. 2). The ratios(Obs/Pred) for AUC0-∞, Cmax, and CL after i.v. and oral administration of R- and S-carvedilol were within twofold error range (Fig. 3). After i.v. administration, the systemic concentration of R-carvedilol was slightly higher than that of S-carvedilol, which was evident from a mean R/S AUC0-∞ ratio of 1.2 and 1.4 for observed and predicted data, respectively. An increase in the mean observed and predicted R/S AUC0-∞ ratios was seen after oral administration of carvedilol, as it was increased to 2.5 and 2.4, respectively, suggesting that stereoselective disposition is more pronounced after oral administration.

The visual predictive checks in EMs and PMs of CYP2D6 show that the model has slightly overpredicted the absorption phase (Cmax) for S-carvedilol, but, for R-carvedilol, the Cmax predictions were in agreement with the observed data (Fig. 2). The ratios(Obs/Pred) for all the PK parameters in EMs and PMs of CYP2D6 were within twofold

TABLE 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Population</th>
<th>No. of Subjects</th>
<th>Dose (mg)</th>
<th>Application</th>
<th>Age (years)</th>
<th>Body Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Healthy</td>
<td>10</td>
<td>12.5</td>
<td>i.v. infusion</td>
<td>29.5</td>
<td>73.9</td>
</tr>
<tr>
<td>2</td>
<td>Healthy</td>
<td>3</td>
<td>12.5</td>
<td>i.v. infusion</td>
<td>29.5</td>
<td>73.9</td>
</tr>
<tr>
<td>3</td>
<td>Healthy</td>
<td>10</td>
<td>50</td>
<td>Oral</td>
<td>28.4</td>
<td>73.9</td>
</tr>
<tr>
<td>4</td>
<td>Healthy</td>
<td>3</td>
<td>50</td>
<td>Oral</td>
<td>32.5</td>
<td>73.9</td>
</tr>
<tr>
<td>5</td>
<td>Healthy</td>
<td>9</td>
<td>25</td>
<td>Oral</td>
<td>32.5</td>
<td>73.9</td>
</tr>
<tr>
<td>6</td>
<td>Healthy</td>
<td>7</td>
<td>64</td>
<td>Oral</td>
<td>29.7</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>Healthy</td>
<td>20</td>
<td>6.25</td>
<td>Oral</td>
<td>55</td>
<td>89.5</td>
</tr>
<tr>
<td>8</td>
<td>Heart failure</td>
<td>20</td>
<td>12.5</td>
<td>Oral</td>
<td>55</td>
<td>89.5</td>
</tr>
<tr>
<td>9</td>
<td>Heart failure</td>
<td>20</td>
<td>25</td>
<td>Oral</td>
<td>55</td>
<td>89.5</td>
</tr>
<tr>
<td>10</td>
<td>Heart failure</td>
<td>20</td>
<td>50</td>
<td>Oral</td>
<td>55</td>
<td>89.5</td>
</tr>
</tbody>
</table>

The number of patients included in pharmacokinetic analysis of S-carvedilol after i.v. and oral application were 6 and 7, respectively.

The presented values for age and weight are the reported values for the initial study population (n = 22).
error range (Fig. 3). Furthermore, the predicted versus observed systemic drug concentration plots after i.v. and oral application of R- and S-carvedilol showed that the model has successfully predicted the observed data at high and low systemic drug concentrations (Supplemental Fig. 3).

The predicted steady state volumes of distribution were 1.57 and 1.95 L/kg for R- and S-carvedilol, which are in line with reported values (range) of 1.39–3.40 and 1.42–3.84 L/kg, respectively. Additionally, the predicted bioavailability of R- and S-carvedilol in healthy adults was 0.34 and 0.17, respectively, which is in agreement with the reported absolute bioavailability of these enantiomers (Table 4).

Adult CHF Patients

The developed adult CHF model was successful in predicting stereoselective disposition of R- and S-carvedilol after administering steady state oral doses of racemic carvedilol (6.25–50 mg) in CHF patients (Fig. 4). The mean ratios (Obs/Pred) of the PK parameters for both enantiomers were within twofold error range and close to unity. The mean ratios (Obs/Pred) for CL/F and Cmax were 1.2 and 0.8 for R-carvedilol and 1.1 and 0.9 for S-carvedilol (Fig. 5). Moreover, the predicted versus observed systemic drug concentration plots in CHF showed that the model has successfully predicted steady state systemic concentrations of R- and S-carvedilol at all dosage levels (Supplemental Fig. 5). In adult with CHF, the mean R/S AUC0–∞ ratios were reduced to 1.8 and 1.6 for observed and predicted data, respectively, showing a relative increase in S-carvedilol concentration in CHF patients.

A decrease in predicted bioavailability (F) of both R- and S-carvedilol was seen in CHF patients, which was associated with decrease in fS and fH. The predicted fS, fH, and F in adult CHF patients were reduced to 0.74, 0.19, and 0.14 for R-carvedilol and to 0.55, 0.11, and 0.05 for S-carvedilol (Table 4).

Pediatric CHF Patients

The systemic concentration-time profiles of R- and S-carvedilol after administering an oral dose of 0.09 mg/kg racemic carvedilol in the entire age range (0.12–19.3 years) without incorporating any pathophysiological changes show that the developed model was capable of predicting the age-specific changes in systemic concentrations of both enantiomers, because most of the observed systemic concentration-time profiles were within predicted 5th and 95th percentiles (Supplemental Fig. 4). Moreover, the age-related changes occurring in CL/F of R- and S-carvedilol were captured by the model, as the observed values were within the predicted CL/F range, except in two patients with age of 17.5 and 19.3 years, where the observed CL/F was lower than the predicted values (Supplemental Fig. 4).

The predicted systemic concentration-time profiles and the ratio (Obs/Pred) of the PK parameters in different pediatric age groups after administering an oral dose of 0.09 mg/kg racemic carvedilol are shown in Figs. 6 and 7. The infants, young children, and children who were classified with respect to Ross score were better described without incorporating pathophysiological changes in the model, as the AUC0–∞ and CL/F ratio (Obs/Pred) were always within twofold error range and the results in these age groups are as follows: In infants, the model has slightly overpredicted systemic concentration of both enantiomers that can be seen in the ratio (Obs/Pred) for Cmax and AUC0–∞, which were 0.8 for R-carvedilol and 0.7 for S-carvedilol. The predictions in young children for R-carvedilol were in close agreement with the observed data, but the Cmax for S-carvedilol was overpredicted in this age group and the AUC0–∞ ratio (Obs/Pred) for R- and S-carvedilol were 1.2 and 1.7, respectively. In children, the predictions for both enantiomers were in agreement with the observed data, and the CL/F and Cmax ratio (Obs/Pred) for R- and S-carvedilol were 1.1 and 1.2, respectively (Figs. 6 and 7).

Among the three patients (two adolescents and one young adult) who were classified as adults, according to NYHA functional classification, two (17.5 and 19.3 years) were better described with incorporation of the pathophysiological changes, as in adults with CHF, and are presented individually in the visual predictive checks and comparison of PK parameters (Figs. 6 and 7). The 17.5-year-old patient classified as NYHA class II was better described with organ blood flow reductions as the AUC0–∞ and CL/F ratio (Obs/Pred) for R- and S-carvedilol were 1.2 and 1.7, respectively. In children, the predictions for both enantiomers were in agreement with the observed data, and the CL/F and Cmax ratio (Obs/Pred) for R- and S-carvedilol were 1.1 and 1.2, respectively (Figs. 6 and 7).

All patients were diagnosed with heart failure and were participants in the same clinical trial (Behn, 2001). *Patient out of the pediatric age range according to guidelines set by World Health Organization.

TABLE 3

Characteristics of pediatric data used for model development

<table>
<thead>
<tr>
<th>No.</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Body Weight (kg)</th>
<th>Dose (mg/kg)</th>
<th>Ross Score/NYHA Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
<td>Female</td>
<td>3.1</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0.13</td>
<td>Male</td>
<td>4</td>
<td>0.09</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>Male</td>
<td>3.9</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>Female</td>
<td>5.2</td>
<td>0.09</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>Male</td>
<td>8</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1.25</td>
<td>Male</td>
<td>10.1</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>Male</td>
<td>9.5</td>
<td>0.09</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>3.5</td>
<td>Female</td>
<td>13.1</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>5.5</td>
<td>Male</td>
<td>20.2</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
<td>Male</td>
<td>24.3</td>
<td>0.09</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>8.25</td>
<td>Male</td>
<td>25.8</td>
<td>0.09</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11.6</td>
<td>Female</td>
<td>34.3</td>
<td>0.09</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>11.8</td>
<td>Male</td>
<td>39</td>
<td>0.09</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>17.5</td>
<td>Male</td>
<td>56</td>
<td>0.09</td>
<td>NYHA III</td>
</tr>
<tr>
<td>15</td>
<td>17.8</td>
<td>Male</td>
<td>61</td>
<td>0.09</td>
<td>NYHA III</td>
</tr>
<tr>
<td>16</td>
<td>19.3*</td>
<td>Male</td>
<td>98.2</td>
<td>0.09</td>
<td>NYHA III</td>
</tr>
<tr>
<td>Mean</td>
<td>6.7</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>6.72</td>
<td></td>
<td>25.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Patient out of the pediatric age range according to guidelines set by World Health Organization.
Lastly, the predicted versus observed systemic drug concentration plots in pediatrics show that, with few exceptions, particularly with R-carvedilol, where model has underpredicted the systemic concentrations, in general the model was capable of predicting the individual concentrations of both enantiomers, as most of the concentrations were within twofold error range (Supplemental Fig. 5).

Discussion

In the presented work, the pathophysiological organ blood flow changes occurring in CHF were incorporated into whole-body PBPK model to predict stereoselective disposition of carvedilol in CHF patients. When the developed PBPK model has successfully described PK of R- and S-carvedilol in healthy adults and after incorporation of
reduced organ blood flows in adult CHF patients, it was scaled to pediatric CHF patients. The scaling of adult model to children helped in exploring whether the same pathophysiological changes seen in adult CHF patients could be adopted for the pediatric CHF patients.

The model development was initiated by parameterization of various drug-specific parameters after i.v. application in healthy adults, which was followed by predictions of R- and S-carvedilol after oral administration. The predicted bioavailability of R- and S-carvedilol was in very close agreement with the reported absolute bioavailability of these enantiomers (Neugebauer et al., 1990) (Table 4). The additional success in predicting the disposition of R- and S-carvedilol in EMs and PMs of CYP2D6 provided additional confidence in the CYP2D6 CL\text{int} values used in the developed model, as this enzyme is the most relevant for the drug metabolism. Moreover, in comparison with R-carvedilol, the slight overprediction of C\text{max} with S-carvedilol highlights the equally important role of other cyp-enzymes involved in its metabolism, as in the developed model only 50% CL of S-carvedilol is attributed to CYP2D6 and remaining 30% to other cyp-enzymes, whereas with R-carvedilol 74% CL is associated with CYP2D6 and remaining 6% is attributed to other cyp-enzymes. Therefore, this suggests that, in addition to CYP2D6 genotype, the incorporation of genotype-specific data for other cyp-enzymes involved in CL of S-carvedilol is equally important for predicting its ADME.

The developed model was successful in predicting the ~twofold difference in F of both enantiomers (Table 4). It was seen that carvedilol undergoes extensive stereoselective first-pass metabolism that is more sensitive toward S-carvedilol. Furthermore, the resulted R/S AUC\text{0–\infty} ratios suggest that stereoselective CL of carvedilol is more distinct after oral administration, because the predicted R/S AUC\text{0–\infty} ratio in healthy adults after i.v. administration was 1.4 and it was increased to 2.4 after oral administration of carvedilol. The predicted R/S AUC\text{0–\infty} ratio was decreased to 1.6 in adult CHF patients after administering steady state oral application of carvedilol. This decrease in R/S AUC\text{0–\infty} ratio was associated with differences in CL\text{int} of both enantiomers, as the reduction of Q\text{H} in CHF resulted in a differential effect on CL of both enantiomers. Therefore, in CHF compared with R-carvedilol, there will be a relative increase in S-carvedilol systemic concentration and hence its AUC\text{0–\infty}. This relative increase in S-carvedilol exposure is expected to expand with increased severity of disease.

The incorporation of reduced blood flows to liver and kidney in adult CHF patients resulted in decreased CL/F of R- and S-carvedilol; because both carvedilol enantiomers undergo extensive first-pass metabolism.

Fig. 3. Comparison between the observed and predicted values of AUC\text{0–\infty}, C\text{max}, and drug clearance in healthy adults. Results are presented as ratios\text{Obs/Pred}. (A, B) R-carvedilol and (C, D) S-carvedilol • i.v. application, ■ oral application. The shadowed gray area indicates a twofold error range. When more than one clinical observed data were available at the same dose level, a line was used to show the mean of the ratio\text{Obs/Pred}. CL is the calculated CL/F if the dose is given orally.

Table 4 Predicted bioavailability of carvedilol enantiomers in different populations

<table>
<thead>
<tr>
<th>Simulated Population</th>
<th>R-Carvedilol</th>
<th>S-Carvedilol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F, F\text{a}, f, F</td>
<td>F, F\text{a}, f, F</td>
</tr>
<tr>
<td>Healthy adults</td>
<td>0.98 0.35 0.99 0.34</td>
<td>0.96 0.21 0.88 0.17</td>
</tr>
<tr>
<td>Extensive metabolizers</td>
<td>0.99 0.35 0.99 0.34</td>
<td>0.96 0.20 0.89 0.17</td>
</tr>
<tr>
<td>Poor metabolizers</td>
<td>1.00 0.65 0.99 0.64</td>
<td>0.98 0.34 0.89 0.30</td>
</tr>
<tr>
<td>Adults with heart failure</td>
<td>0.97 0.19 0.74 0.14</td>
<td>0.92 0.11 0.55 0.05</td>
</tr>
<tr>
<td>Pediatrics with heart failure</td>
<td>0.98 0.42 0.99 0.41</td>
<td>0.96 0.27 0.93 0.23</td>
</tr>
</tbody>
</table>

F, bioavailability; f, fraction of drug absorbed; F\text{a}, fraction of drug escaping metabolism in the gut; F, fraction of drug escaping the hepatic metabolism.

*Simulation performed without reducing organ blood flows.
(Neugebauer et al., 1990), this decrease in CL/F was primarily attributed to reduction in Q_H. The reduced Q_H led to an increased first-pass metabolism (decrease in F_h), which, in turn, resulted in reduced F of both enantiomers. The decrease in carvedilol CL/F and F was successfully predicted by the developed model in CHF patients (Figs. 4 and 5; Table 4). Furthermore, the predicted f_a of both enantiomers was reduced in adult CHF patients (Table 4), which is consistent with the reports stating reduction in passive drug diffusion is due to reduction in Q_{villi} in

Fig. 4. Comparison of observed and predicted systemic R- and S-carvedilol concentration-time profiles after steady state oral drug dosing in heart failure patients: (A, E) 6.25 mg, (B, F) 12.5 mg, (C, G) 25 mg, and (D, H) 50 mg oral carvedilol. Observed data are shown as dark circles (Tenero et al., 2000). Prediction results are shown as median (lines), 5th and 95th percentiles (dotted lines), and minimum/maximum (dashed lines).
CHF (Berkowitz et al., 1963; Sica, 2003). Moreover, in CHF, the absorption of drugs with low solubility is more susceptible to changes in intestinal blood flow; therefore, for drugs like carvedilol (BCS class II) having low solubility and high permeability, any change in blood flow to intestine can have an impact on its f_a (Ogawa et al., 2014). In the developed model, due to absence of any clear information on the

![Fig. 5. Comparison between the observed and predicted values of AUC_{0→∞}, C_{max}, and CL/F in adult heart failure population. Results are presented as mean ratios (Obs/Pred) for R-carvedilol (A) and S-carvedilol (B).](image)

![Fig. 6. Model predictions in different pediatric age groups for R- and S-carvedilol (A, B) infants, (C, D) young children, (E, F) children, and (G, H) adolescents. Model predictions in individual patients (I-P) after administering 0.09 mg/kg oral dose racemic carvedilol, without (○) and with (●) adjusting the organ blood flows, — median prediction, --- minimum and maximum prediction, -- 5th and 95th percentiles, and ●, ○ observed data (Behn, 2001).](image)
intestinal blood flow in relation to severity of CHF, intestinal blood flow was not reduced with severity of CHF. Instead, reduction in Q_H was used as a surrogate; therefore, to account for decrease in Q_{villi} and its impact on absorption of both enantiomers, the Q_G was reduced in relation to reduction in Q_H.

The pediatric simulations showed that, in contrast to the adults, the patients up to 12 years of age, all categorized with Ross scoring system, were better described without the reductions in organ blood flow. In contrast, one from the two adolescent patients as well as the young adult patient (17.5 and 19.3 years, all classified according to NYHA classification) were better described after incorporating organ blood flow reductions. One of the possible reasons for such a difference may be the use of the same organ blood flow reductions in pediatric population as in adults. Because the incorporated blood flow reductions in pediatric simulations were based on adult values, it is likely that these values might be close to what is happening in the late adolescence, but not true for young children, as improvement in predictions with incorporation of reduced organ blood flows was only seen in old adolescents (the young adults). Moreover, the pathophysiology of CHF is different between adult and pediatric patients, with congenital heart disease being the main cause of CHF in the vast majority of pediatric patients (Hsu and Pearson, 2009). Compared with adults, children have higher frequency of heart rate (Tanaka et al., 2001; Fleming et al., 2011) and a higher drug CL due to higher percentage of liver weight in relation to body weight (Noda et al., 1997). This can lead to differences in the total impact of these changes on drug CL between both populations. In addition to that, it is not clear whether the different grading system that was used is related, in any way, to this finding, as both grading systems are based on different criteria. To draw conclusions about the validity of this finding as well as the possible reasons for it, more data are needed specially to confirm whether this difference is true. However, the presented findings indicate that the incorporated blood flow reductions in the adult model cannot be directly adopted in pediatrics, at least for the young ones.

The ontogeny of the metabolic cyp-enzymes seems to have a minor impact on the overall disposition of carvedilol enantiomers in the pediatric CHF patients that were included in the model evaluation (Behn, 2001). This is because all of these pediatric patients were above 1 month of age and the two major cyp-enzymes for carvedilol metabolism (i.e., CYP2D6 and CYP2C9) have a fast ontogeny profile, as they achieve more than ~50% of adult activity by the age of 0.1 year (Salem et al., 2013). Nevertheless, in the developed model, about 20% of the total assigned metabolism of S-carvedilol is due to cyp-enzymes with slow enzyme ontogeny and a later maturation time point, that is, CYP1A2, 10%; CYP2E1, 5%; and CYP3A4, 5%. The latter enzymes contribute only to about 4% in the case of R-carvedilol, that is, CYP1A2, 2%; CYP2E1, 1%; and CYP3A4, 1%. As a result, the impact of the slow maturation of these enzymes will be more profound on the CL of S- rather than the R-carvedilol. Moreover, if pediatric patients less than 1 month of age would have been included, the effect of enzyme ontogeny on the predicted drug CL would have been more pronounced.

The predicted systemic drug concentration profiles for R- and S-carvedilol in different pediatric age groups have successfully captured the observed data, with few exceptions, where model has overpredicted the systemic concentrations of R- and S-carvedilol, particularly in infants. These overpredictions in infants may be associated with the knowledge gaps with respect to intestinal permeability and perfusion within CHF patients of this age group, as low drug absorption in

Fig. 7. Comparison between the observed and predicted values of C_{max} and CL/F in pediatric CHF patients. Results are presented as individual and ratioObs/Pred (A, B) R-carvedilol and (C, D) S-carvedilol, predictions without organ blood flow reductions and predictions with incorporation of organ blood flow reductions. The arrowhead of the line points from ratioObs/Pred without reduction in organ blood flow to ratioObs/Pred with reduction in organ blood flow in the same patient. The shadowed gray area indicates a twofold error range.
comparison with adults has been previously reported in pediatric CHF due to congenital heart defects (Nakamura et al., 1994). Because changes in intestinal morphology, permeability, and absorption are affected in adult CHF patients, the possibility of such changes in pediatric CHF patients cannot be completely ruled out (Sica, 2003; Sandek et al., 2007).

The age-related changes in CL/F for R- and S-carvedilol have been successfully captured by the developed PBPK model (Supplemental Fig. 5). The observed CL/F values were within the predicted values, except in 17.5- and 19.3-year patients, where the observed CL/F for both enantiomers was lower, which can be attributed to reduced blood supply to eliminating organs in these patients as only in these two patients, the predicted PK parameters were improved with incorporation of reduced organ blood flows (Fig. 7). Additionally, due to the higher hepatic extraction of S-carvedilol, the impact of reduction in QH on its CL/F was more significant when compared with R-carvedilol. However, it seems that the role of reduced organ blood flows becomes important only in adolescents, who were categorized according to NYHA classification of CHF. Because the number of participants in the clinical study used for model evaluation in pediatrics was small, these results cannot be generalized for all of the pediatric CHF patients.

Because the developed model has successfully predicted the stereoselective disposition of carvedilol in healthy and diseased populations, it can be used to predict genotype-specific CL/F in special populations (pediatrics, geriatrics, and cirrhosis) and can assist in improving the safety profile of carvedilol by reducing the adverse drug reactions associated with it, particularly the ones associated with higher systemic concentrations of R-carvedilol (orthostatic hypotension) that can lead to serious consequences in the geriatric population.

We will end by quoting G. T. Tucker and M. S. Lenbrand: “When looking glass drugs are given their PKs should, whenever possible, be viewed from both sides of the mirror” (Tucker and Lenbrand, 1990).

Acknowledgments
The authors thank Cerfarta for providing academic licenses for the Simcyp and WinNonLin software programs.

Authorship Contributions
Participated in research design: Rasool, Khalil, Läer.
Conducted experiments: Rasool.
Performed data analysis: Rasool, Khalil.
Wrote or contributed to the writing of the manuscript: Rasool, Khalil, Läer.

References
Benet LZ, Broccatelli F, and Oprea TI (2011) BDDCS applied to over 900 drugs. "WinNonLin" software programs.

We will end by quoting G. T. Tucker and M. S. Lenbrand: “When looking glass drugs are given their PKs should, whenever possible, be viewed from both sides of the mirror.” (Tucker and Lenbrand, 1990.)

Address correspondence to: Muhammad Fawad Rasool, Department of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine University, 40225 Düsseldorf, Germany. E-mail: fawadrasool@bzu.edu.pk; fawad.rasool@uni-duesseldorf.de
Supplemental Data

Journal Title

Drug Metabolism and Disposition

Article Title

Predicting stereo-selective disposition of carvedilol in adult and pediatric chronic heart failure patients by incorporating pathophysiological changes in organ blood flows–A physiologically based pharmacokinetic approach

Authors

Muhammad Fawad Rasool, Feras Khalil and Stephanie Läer
Supplemental Methods

Sensitivity Analysis

In order to assess the uncertainty associated with some pediatric model input parameters, which were adopted from adult PBPK model, sensitivity analysis (SA) was performed. The SA was performed on parameters that have the highest potential effect on the clearance (as oral clearance CL/F) and area under the curve (AUC\textsubscript{0–\infty}) of both enantiomers, i.e., hepatic (portal and arterial), P\textsubscript{eff} and \(f_{u,Gut} \).

Sensitivity index (SI) was used to determine the magnitude of change in output of the parameter (PK-parameters) per unit change in the magnitude of input parameter from its initial value.

The SI is determined by using the following relation \textit{(Supplemental equation 1)} implemented within Simcyp\textregistered version 14.1,

\[
SI_n = \frac{(Q(P_{n+1}) - Q(P_n))}{(P_{n+1} - P_n)}
\]

Where SI is the sensitive index for the output variable which is function of parameter \(Q(P) \) with respect to change in the value of input parameter \(P \) from the initial value \(P_n \).

The SA showed that the predicted CL/F and AUC\textsubscript{0–\infty} in pediatric CHF patients were most sensitive to changes in \(f_{u,Gut} \), hepatic portal blood flow, and \(P_{eff} \) \textit{(Supplemental Figure 1)}. However, the PK parameters of interest were only sensitive to \(P_{eff} \) at low values, which is not expected in the case of carvedilol as it is a BCS II drug with high permeability and a \(P_{eff} \) value of \(<1\) is not reasonable, which leaves the \(f_{u,Gut} \) and hepatic portal blood flow as the most sensitive parameters. This finding was further confirmed from the simulated plasma concentration-time profiles of R and S-carvedilol after periodically changing the values of input parameters in 10 consecutive runs \textit{(Supplemental Figure 2)}.

Due to the lack of measured/reported data for these parameters, it was not plausible to use different values of input parameters in adult and pediatric CHF populations. Therefore, as mentioned previously in
the modelling strategy, the evaluated adult CHF model was scaled to pediatric CHF patients by keeping all the input parameters consistent with the evaluated adult PBPK model.
Supplemental Table 1 Comparison of area under the systemic drug concentration-time curve from time zero to infinity (AUC$_{0-\infty}$) and area under the systemic drug concentration-time curve from time zero to last measured concentration (AUC$_{\text{last}}$)

<table>
<thead>
<tr>
<th>Population</th>
<th>R-Carvedilol</th>
<th>S-Carvedilol</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC$_{\text{last}}$</td>
<td>AUC$_{0-\infty}$</td>
<td>Ratio (observed/predicted)</td>
</tr>
<tr>
<td>Adults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy adults (iv)</td>
<td>1.00</td>
<td>1.06</td>
<td>0.99</td>
</tr>
<tr>
<td>Healthy adults (50 mg oral)</td>
<td>0.93</td>
<td>0.99</td>
<td>0.88</td>
</tr>
<tr>
<td>Healthy adults (0.09 mg/kg oral)</td>
<td>0.99</td>
<td>1.04</td>
<td>0.76</td>
</tr>
<tr>
<td>Healthy adults (EM)</td>
<td>1.47</td>
<td>1.44</td>
<td>1.52</td>
</tr>
<tr>
<td>Healthy adults (PM)</td>
<td>1.12</td>
<td>1.09</td>
<td>1.00</td>
</tr>
<tr>
<td>Adults with CHF</td>
<td>1.18</td>
<td>1.23</td>
<td>0.94</td>
</tr>
<tr>
<td>Pediatrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>0.84</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>Infants</td>
<td>0.71</td>
<td>0.84</td>
<td>0.62</td>
</tr>
<tr>
<td>Young children</td>
<td>1.21</td>
<td>1.24</td>
<td>1.63</td>
</tr>
<tr>
<td>Children</td>
<td>1.08</td>
<td>1.10</td>
<td>0.91</td>
</tr>
<tr>
<td>17.8 year</td>
<td>0.89</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>17.5 year</td>
<td>2.65</td>
<td>2.73</td>
<td>2.25</td>
</tr>
<tr>
<td>17.5 yeara</td>
<td>1.63</td>
<td>1.49</td>
<td>1.08</td>
</tr>
<tr>
<td>19.3 year</td>
<td>1.84</td>
<td>1.67</td>
<td>2.52</td>
</tr>
<tr>
<td>19.3 yeara</td>
<td>0.74</td>
<td>0.57</td>
<td>0.67</td>
</tr>
</tbody>
</table>

a predictions with organ blood flow reductions, iv: intravenous, EM: extensive metabolizers, PM: poor metabolizers and CHF: chronic heart failure
Figure Legends

Supplemental Figure 1 Sensitivity analysis on various model input parameters and their effect on predicted oral clearance (CL/F) and area under the curve (AUC$_{0-\infty}$) of R and S carvedilol in pediatric chronic heart failure patients. *Liver hepatic blood flow* (% of cardiac output) (A, B, C, D), *liver arterial blood flow* (% of cardiac output) (E, F, G, H), *human jejunum permeability* (P_{eff}) (I, J, K, L) and *fraction of unbound drug in gut* ($f_{u,Gut}$) (M, N, O, P). Y-axis on the right side shows sensitivity index and on the left side shows CL/F and AUC$_{0-\infty}$. Solid lines indicate CL/F and AUC$_{0-\infty}$. The dotted line indicates sensitivity index. The solid circles (●) show the value of the parameter used in healthy male population. The grey shaded area shows the range of reduced organ blood flow used for performing simulations in chronic heart failure patients.

Supplemental Figure 2 Predicted R and S-carvedilol systemic concentration vs. time profiles from the sensitivity analysis by changing the values of input parameters in 10 runs. *Liver hepatic blood flow* (% of cardiac output), simulated range: 1–25 % (A, B), *liver arterial blood flow* (% of cardiac output), simulated range: 1–10 % (C, D), *human jejunum permeability* (P_{eff}), simulated range: 0.5–5 cm/s (E, F) and *fraction of unbound drug in gut* ($f_{u,Gut}$), simulated range: 0–1 (G, H).

Supplemental Figure 3 Observed vs. predicted concentrations plots in healthy adults after intravenous (A, B), and oral (C, D) racemic carvedilol application, and in chronic heart failure patients after oral application racemic carvedilol (E, F). The solid line indicates line of identity and the dashed line show a 2-fold error range.

Supplemental Figure 4 Model predictions in the entire pediatric age range $n=15$ (0.12 to 17.8 year) including the young adult $n=1$ (19.3 year) after administering 0.09 mg/kg racemic carvedilol. (A, B) systemic concentration-time plots, ○ observed data — median prediction, ---- minimum and maximum prediction, 5th and 95th percentiles and (C, D) Change in oral clearance of R and S-carvedilol with age ○ Predicted CL/F, ● observed CL/F (Behn, 2001). Simulations performed by creating a virtual population of 1000 individuals.
Supplemental Figure 5 Observed vs. predicted concentrations plots in pediatric CHF patients after administering 0.09 mg/kg racemic carvedilol (a, b). The solid line indicates line of identity and the dashed line show a 2-fold error range.
Supplemental Figure 2

R-Cardedilol

S-Cardedilol

Liver Portal Blood Flow (% of cardiac output)

Systemic concentration (μg/L)

Liver Arterial Blood Flow (% of cardiac output)

Human Jejunum Permeability (P_{ejb}) cm/s

Fraction of Unbound Drug in Gut ($f_{u, Gut}$)

Time (h)
Supplemental Figure 3

In healthy adults after iv application

A
Predicted concentration (μg/L)
Observed concentration (μg/L)

B
Predicted concentration (μg/L)
Observed concentration (μg/L)

In healthy adults after oral application

C
Predicted concentration (μg/L)
Observed concentration (μg/L)

D
Predicted concentration (μg/L)
Observed concentration (μg/L)

In adult CHF patients after oral application

E
Predicted concentration (μg/L)
Observed concentration (μg/L)

F
Predicted concentration (μg/L)
Observed concentration (μg/L)
Supplemental Figure 5

(A) R-Cardedilol

(B) S-Cardedilol

Predicted concentration (μg/L) vs. Observed concentration (µg/L)
References

