The Effect of Chronic Treatment with Lurasidone on Rat Liver Cytochrome P450 Expression and Activity in the Chronic Mild Stress Model of Depression

Marta Kot, Anna Haduch, Mariusz Papp, and Władysława A. Daniel

Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland

Received July 28, 2017; accepted September 15, 2017

ABSTRACT

Recent studies indicated an important role of the monoaminergic nervous systems (dopaminergic, noradrenergic, and serotonergic systems) in the neuroendocrine regulation of cytochrome P450 (CYP) expression and activity in the liver. The aim of our present research was to determine the effect of the novel atypical neuroleptic drug with antidepressant properties lurasidone, on the expression (mRNA and protein level) and activity of liver CYP isoforms involved in the metabolism of drugs and endogenous steroids, in the chronic mild stress (CMS) model of depression. Male Wistar rats were subjected to CMS for 7 weeks. Lurasidone (3 mg/kg per os per day) was administered to nonstressed or stressed animals for 5 weeks (weeks 3–7 of CMS). It has been found that 1) CMS moderately affects CYP (CYP2B, CYP2C11, and CYP3A), and its effects are different from those observed after other kinds of psychologic stress, such as repeated restraint stress or early-life maternal deprivation; 2) chronic lurasidone influences the expression and/or activity of CYP2B, CYP2C11, and CYP3A isoforms; and 3) CMS modifies the action of lurasidone on CYP expression and function, leading to different effects of the neuroleptic in nonstressed and stressed rats. Based on the obtained results, it can be suggested that the metabolism of endogenous substrates (e.g., steroids) and drugs, catalyzed by the isoforms CYP2B, CYP2C11, or CYP3A, may proceed at a different rate in the two groups of animals (nonstressed and stressed) in the rat CMS model.

Introduction

Our earlier studies indicate an important role of the monoaminergic nervous systems (dopaminergic, noradrenergic, and serotonergic systems) in the neuroendocrine regulation of cytochrome P450 (CYP) expression in the liver, involving growth hormone, corticosterone, and thyroid hormones (Wójcikowski and Daniel, 2009; Kot and Daniel, 2011; Kot et al., 2012, 2013, 2015; Bromeck et al., 2013; Sadakierska-Chudy et al., 2013; Rysz et al., 2015, 2016a,b; Kot and Daujat-Chavanie, 2016; Kot, 2017). The above-mentioned hormones are the main physiologic regulators of CYP genes in the liver (Gibson et al., 2002; Waxman and O’Connor, 2006; Monostory et al., 2009; Dvorak and Pavek, 2010; Brtko and Dvorak, 2011; Monostory and Dvorak, 2011).

Stress, depending on its nature, intensity, and duration, produces multiple changes in the functioning of the monoaminergic systems, and thus it may affect the central neuroendocrine and autonomic regulation of liver function and CYP expression (Carrasco and Van de Kar, 2003; Uyama et al., 2004; Kot et al., 2013; Chmielarz et al., 2015). Psychotropic drugs that act on monoaminergic receptors or transporters in the brain and periphery affect the endocrine and immune systems (Jaber et al., 1994; Rane et al., 1996; Raap and Van de Kar, 1999; Drzyzga et al., 2006; Capuzzi et al., 2017; Köhler et al., 2017) and thus may also influence the liver function and CYP regulation, independently of their direct action on the monoaminergic and other receptors present in the liver (Daniel, 2005; Ruddell et al., 2008; Zidek et al., 2009; Wójcikowski and Daniel, 2011; Konstandi, 2013; Kot and Daujat-Chavanie, 2016).

Lurasidone is a novel atypical antipsychotic drug with a high affinity for dopamine D2, serotonin 5-HT2A, and 5-HT7 receptors. It also has antagonist activity at α2A and α2C adrenergic receptors and partial agonist activity at 5-HT1A receptors (Ishibashi et al., 2010). It is effective in the therapy of patients with schizophrenia and shows antidepressant properties in patients with bipolar disorders (Meyer et al., 2009; Citrome, 2011; Fountoulakis et al., 2015). Lurasidone also shows antidepressant-like effects in the chronic mild stress (CMS) model of depression in the rat (Willner 1997; Luoni et al., 2014).

Lurasidone is an azapirone derivative with a benzisothiazol-piperazine side chain, metabolized predominantly by CYP3A4 in humans (Caccia, 2011; Chiu et al., 2014). The main metabolic pathways of lurasidone include oxidative N-dealkylation between the piperazine and cyclohexane rings, hydroxylation of the norbornane ring, and S-oxidation. Other metabolic pathways comprise hydroxylation of the cyclohexane ring and reductive cleavage of the isothiazole ring, followed by S-methylation. The two major inactive metabolites are the N-dealkylation products (the acidic metabolites ID-20219 and ID-20220), and the two active metabolites are the norbornane hydroxylated products (ID-14283 and ID-14326).

In vitro study on human liver microsomes and cDNA-expressed CYP isoforms showed a modest inhibitory effect of lurasidone on the activity of CYP1A2, CYP2C19, and CYP3A4 isoforms (Wójcikowski et al., 2016; Greenberg and Citrome, 2017), but weak or no effect on other CYP enzymes, such as CYP2C9, CYP2B6, or CYP2D6. However, its possible effect on liver CYP expression produced by chronic treatment,
which is used to treat psychiatric disorders, has not been studied as yet, although the antipsychotic or antidepressant therapy lasts for months or years.

The liver enzymatic complex of CYP is engaged in the metabolism of endogenous substrates (e.g., steroids) and drugs of different chemical structures and pharmacological groups, including psychotropics (neuroleptics, antidepressants, anxiolytics). Because comorbidity and concomitant medications are common in psychiatric patients, pharmacokinetic interactions between psychotropic drugs at a level of CYP may occur. Therefore, the aim of our present research was to investigate the effect of chronic treatment with lurasidone on the expression and activity of CYP in the rat, in normal conditions and under CMS, an animal model of depression.

Materials and Methods

Animals. Male Wistar Han rats (Charles River Laboratories, Sulzfeld, Germany), weighing 280–300 g, were singly housed with food and water freely available, and were maintained on a 12-hour light/dark cycle (lights on at 08:00 hour) under conditions of constant temperature (22 ± 2°C) and humidity (50% ± 5%). All procedures used in this study were conducted in compliance with the rules and principles of the 86/609/EEC Directive, and were approved by the Bioethical Committee of the Institute of Pharmacology, Polish Academy of Sciences (Krakow, Poland).

Drugs and Chemicals. Lurasidone (hydrochloride) was provided by TargetMd (Boston, MA). NADP, NADPH, glucose-6-phosphate-dehydrogenase, glucose-6-phosphate, caffeine, and its metabolites (theobromine, paraxanthine, theophylline, and 1,3,7-trimethyluric acid) were purchased from Sigma-Aldrich (St. Louis, MO). Testosterone and its hydroxy-metabolites (2α-, 2β-, 6β-, 7α-, 16α-, and 16β-hydroxytestosterone) were supplied by Steraloids (Newport, KY).

The polyclonal rabbit primary anti-rat CYP2C11 antibody was obtained from Abcam (Cambridge, UK); the anti-rat CYP3A23/3A1 and CYP3A2 antibodies came from Millipore (Temecula, CA). The polyclonal goat anti-rat CYP2B1 antibody was form Daichii Pure Chemicals (Tokyo, Japan). The polyclonal anti-β-actin antibody was purchased from Santa Cruz (Dallas, TX).

Materials and Methods

In Vivo Experiment and Liver Sample Preparation. CMS experiments were performed according to the method described previously (Papp et al., 2014). Briefly, stressed rats were subjected to the CMS procedure for a total of 7 weeks. The stress protocol consisted of the following: two periods of food or water deprivation, two periods of 45°C Cage tilt, two periods of intermittent illumination (lights on and off every 2 hours), two periods of soiled cage (250 ml water in sawdust bedding), one period of paired housing, two periods of low-intensity (lights on and off every 2 hours), and three periods of no stress. All sawdust bedding), one period of paired housing, two periods of low-intensity (lights on and off every 2 hours), and three periods of no stress. All stressors were applied individually and continuously, day and night. Control animals were housed in separate rooms and had no contact with the stressed animals. Following 2 weeks of initial stress, both control and stressed animals were divided into subgroups and for the next 5 weeks received once-daily per os either vehicle (1% hydroxyethylcellulose, 1 ml/kg) or lurasidone (3 mg/kg). After 5 weeks the treatments were terminated, and 24 hours later all animals were sacrificed by decapitation and their livers were quickly removed, frozen using dry ice, and stored at −80°C. Microsomes were prepared from individual rat livers by differential centrifugation (11,000 g for 2× 100,000 g) in a 20 mM Tris/KCl buffer (pH 7.4), including washing with 0.15 M KCl, as described previously (Kot et al., 2012). The above procedure depletes microsomes of the presence of drug administered in vivo.

Determination of CYP Isoform Activity in the Liver. The activity of CYP isoforms was studied in the livers of control rats (nonstressed and stressed) and lurasidone-treated animals (nonstressed and stressed), in the absence and presence of lurasidone added in vitro to liver microsomes. In vitro studies into isoform-specific metabolism of caffeine, warfarin, bufuralol, and testosterone in liver microsomes were carried out at the linear dependence of product formation on time, protein, and substrate concentration, in the previously optimized conditions (Daniel et al., 2006; Haduch et al., 2006; Daniel and Kot, 2008a). Incubations were conducted in a system containing the liver microsomes (1 mg protein/ml). The activity of CYP1A2 was determined by measuring the rate of caffeine metabolism, C-8-hydroxylation (catalyzed by CYP1A2 in the rat), and 1-N-, 3-N-, and 7-N-demethylation (catalyzed by CYP1A2 and other CYP isoforms) at a substrate concentration of 100 μM, as described previously (Kot and Daniel, 2008a,b), with a minor modification, i.e., the NAPDH generating system was replaced with 1.5 mM NADPH (Kot et al., 2012). The final incubation volume was 1 ml, and incubation time was 50 minutes. Caffeine and its metabolites were analyzed by HPLC with UV detection (Kot and Daniel, 2008). The activity of CYP2C6 was studied by measuring the rate of warfarin 7-hydroxylation at a substrate concentration of 60 μM, as described previously (Daniel et al., 2006). The final incubation volume was 0.5 ml, and incubation time was 15 minutes. Warfarin and its metabolite were analyzed by HPLC with fluorescence detection. The activity of CYP2D was estimated by measuring the rate of bufuralol 1′-hydroxylation at a substrate concentration of 10 μM, as described previously (Hiroi et al., 1998; Bromek et al., 2010). The final incubation volume was 0.4 ml, and incubation time was 10 minutes. Bufuralol and its metabolite were analyzed by HPLC with fluorescence detection. The activities of CYP2A, CYP2B, CYP2C11, and CYP3A were studied by measuring the rate of P450-specific reactions: the 7α-, 16β-, 2α-, 2β-, and 6β-hydroxylation of testosterone, respectively, at a substrate concentration of 100 μM and incubation time 15 minutes, as described previously (Haduch et al., 2006, 2008; Węgierski et al., 2013). The final incubation volume was 1 ml. Testosterone and its metabolites were analyzed by HPLC with UV detection. In a separate experiment, the activities of CYP2A, CYP2B, CYP2C11, and CYP3A were determined in the absence or presence of lurasidone added in vitro to pooled liver microsomes (n = 5) derived from nonstressed or stressed control rats, at a pharmacological/therapeutic concentration of 0.25 or 1 μM (Lee et al., 2011; Chiu et al., 2014), without or with preincubation with the neuroleptic for 30 minutes. Then the substrate (testosterone) was added, and the incubation proceeded as above.

An Analysis of CYP Proteins in the Liver. The protein levels of CYP2C11, CYP2B, and CYP3A isoforms in the liver microsomes of control and lurasidone-treated rats were estimated using Western immunoblot analyses, as described previously (Kot and Daniel, 2011; Rysz et al., 2016a). Briefly, microsomal proteins (10 μg per each sample) were separated using a SDS polyacrylamide gel electrophoresis on a 12% separating gel, and then the proteins were transferred to nitrocellulose membranes (Sigma-Aldrich). The following primary antibodies for liver microsomal CYPs were used: a polyclonal rabbit anti-rat antibody raised against CYP2C11 (catalog ab3571; Lot GR33348-6; dilution 1:150; Abcam) (Clarke et al., 2014); a polyclonal goat anti-rat antibody raised against CYP2B1, which also recognized the CYP2B2 form (Daichi Pure Chemicals; catalog 423550; Lot C83104W; dilution 1:1600) (Zhang et al., 2000); a polyclonal rabbit anti-rat CYP3A23/3A1 antibody (AB1253; Lot 2435027; dilution 1:1600; Millipore) (Debri et al., 1995); and anti-rat CYP3A2 antibodies (catalog AB1276; Lot 242677; dilution 1:1600; Millipore) (Debri et al., 1995). After incubation with a primary antibody, the blots were incubated with a secondary antibody, e.g., an appropriate species-specific horseradish peroxidase-conjugated anti-IgG. Rat cDNA-expressed CYP2B1, CYP2C11 (5 μg), CYP3A23/3A1, and CYP3A2 (1 μg) isoforms (Supersomes) were used as standards. Bands on the nitrocellulose membrane were quantified with the Luminescent Image analyzer LAS-1000 using the Image Reader LAS-1000 and Image Gauge 3.11 programs (Fuji Film, Tokyo).

Isolation of Liver RNA, cDNA Synthesis, and Real-Time Analysis of the Expression of Genes Encoding CYP Isoforms. The total RNA was isolated from the frozen liver tissue using a RNeasy Plus Mini Kit (Qiagen; Hilden, Germany) following the manufacturer’s instructions. The quantity and the quality of isolated RNA were verified with a NanoDrop 8000 Spectrophotometer (Thermo Scientific, Walldorf, Germany). RNA was stored at −80°C until use. The first-strand cDNA products were generated using a Transcripter High Fidelity cDNA Synthesis Kit (Roche Diagnostics), according to the manufacturer’s instructions. Briefly, a reverse transcription was performed using 2 μg total RNA and oligo(dT) primers at a total volume of 20 μl. cDNA synthesis was carried out at 55°C for 30 minutes, and at 85°C for 5 minutes to inactivate the reverse transcriptase. The cDNA products were subjected to a PCR amplification using a RotorGene Q Real-Time PCR System (Corbett Research, Sydney, Australia). The expression levels of the CYP genes were normalized against the expression levels of β-actin, as an endogenous control gene. This study was performed in triplicate. The primers and the corresponding CYP gene sequences are presented in Table 1.
enzyme. Following the reverse transcription, samples were diluted with 20 μl RNase-free water and stored at 20°C until the next step of analysis. The expression of genes coding for the CYP isoform CYP2B1 (Rn01457880), CYP2B2 (Rn02786833), CYP2C11 (Rn01502203), CYP3A23/3A1 (Rn0362228), CYP3A4 (Rn00756461), and of the reference gene β-actin (Rn00667869) was detected by a real-time polymerase chain reaction (PCR) using a commercially available TaqMan Gene Expression Master Mix and species-specific TaqMan-type probes and primers (TaqMan gene expression assay; Life Technologies). The reaction mixture (10 μl) consisted of 4.5 μl DNA, 5 μl TaqMan Gene Expression Master Mix, and 0.5 μl TaqMan assay (Life Technologies). Negative control samples were processed in a similar way, but the template was omitted. Real-time PCR runs were performed using Bio-Rad CFX96 PCR system (Bio-Rad, Hercules, CA), and standard thermal cycling conditions were used (50°C for 2 minutes, 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 minutes and 60°C for 1 minute). The PCR of the above-mentioned target and reference genes was run in duplicate. The level of quantification was obtained using the comparative ΔΔCt method (2-ΔΔCt). The relative amount of the target transcript was expressed as a fold change in the expression level relative to the calibrator (i.e., an average ΔCt of the control group).

Statistical Analysis of Data. All of the data are reported as the means (±S.E.M.). The results were analyzed using a multivariate analysis of variance, followed by a post hoc Duncan test. The results were considered as statistically significant when P < 0.05.

Results

The Effect of CMS and Lurasidone on the Activity of CYP Isoforms in Liver Microsomes. CMS significantly decreased the CYP2B2 activity measured as the testosterone 16b-hydroxylation rate and the CYP3A activity measured as the testosterone 6b-hydroxylation rate (Fig. 1), not affecting significantly the activities of other CYP isoforms tested for testosterone transformation, such as CYP2C11 (testosterone 2α- and 16α-hydroxylation) and CYP2A (testosterone 7α-hydroxylation). The rate of caffeine metabolism representing the CYP1A2 activity (C-8-hydroxylation and N-demethylations) (Fig. 2), the rate of warfarin 7-hydroxylation corresponding to the CYP2C6 activity, and the rate of bufuralol 1'-hydroxylation indicative of the CYP2D activity (Fig. 3) also remained unchanged. Lurasidone significantly increased the CYP2B and CYP3A activity in stressed rats, but decreased the CYP2C11 activity in both nonstressed and stressed animals (Fig. 1). The activities of other CYP isoforms studied (CYP2A, CYP1A2, CYP2C6, and CYP2D) were not significantly affected by lurasidone (Figs. 1–3).

The Effect of CMS and Lurasidone on the Protein Level of CYP Isoforms in Liver Microsomes. Searching for molecular mechanisms of the observed changes in the activities of CYP isoforms after CMS and/or lurasidone, the level of CYP protein was studied in liver microsomes. CMS significantly decreased the CYP2C11 and CYP3A2 protein level, but increased that of CYP3A23/3A1 (Fig. 4, A and B). Lurasidone significantly diminished the CYP2B2 protein level in nonstressed rats, but tended to enhance it in stressed animals. The CYP2B2 protein level after lurasidone treatment was significantly higher in stressed than nonstressed subjects. The CYP2C11 protein level was significantly reduced by lurasidone, but only in nonstressed animals. The neuroleptic significantly increased the CYP3A23/3A1 protein level (but not that of CYP3A2) in both nonstressed and stressed rats (Fig. 4, A and B). Consequently, the CYP3A1 protein level in lurasidone-treated rats was much higher in stressed than nonstressed animals.

The Effect of CMS and Lurasidone on the mRNA Level of CYP Isoforms in Liver Tissue. Searching further for genetic mechanisms of the observed changes in CYP isoform activities and protein levels, the effect of CMS and/or lurasidone on the mRNA level of CYP genes was investigated in liver tissue. CMS did not produce any significant changes in the mRNA levels of the tested genes CYP2B1, CYP2B2, CYP2C11, CYP3A23/3A1, and CYP3A2, although a tendency toward increased mRNA level of CYP2B1 and CYP2B2 genes was noted (Fig. 5). Lurasidone significantly increased the CYP3A23/3A1 mRNA level in both nonstressed and stressed rats. The neuroleptic raised the CYP2B1 mRNA level in nonstressed rats, but tended to decrease it in stressed animals (Fig. 5). The CYP2B1 mRNA level after

![Fig. 1](https://example.com/fig1.png) The influence of a 5-week treatment with lurasidone on CYP2B, CYP2C11, CYP3A, and CYP2A activity measured as a rate of testosterone 16b-hydroxylation (A), 2α- and 16α-hydroxylation (B and C), 2β- and 6β-hydroxylation (D and E), and 7α-hydroxylation (F), respectively, in the liver microsomes from the CMS model. Results are shown as the means (±S.E.M.) of data from eight to nine rats per group. The results were analyzed using a multivariate analysis of variance, followed by a post hoc Duncan test, and statistical significance is shown as *P < 0.05; ***P < 0.001 compared with the nonstressed control and #P < 0.05; ###P < 0.001 compared with the stressed control. CON, control.
Lurasidone treatment was significantly lower in stressed than nonstressed subjects. Lurasidone did not significantly affect the mRNA levels of the genes CYP2B2 or CYP2C11.

The Effect of Lurasidone Added In Vitro to the Control Liver Microsomes of Nonstressed and Stressed Rats on the Activity of CYP Isoforms Measured as the Rate of Testosterone Metabolism.

Lurasidone added to liver microsomes of nonstressed control rats at a concentration of 0.25 μM did not affect significantly the testosterone 2β- and 6β-hydroxylation rate, representing the CYP3A activity. However, at the higher concentration of 1 μM, the neuroleptic moderately decreased the CYP3A activity (Fig. 6). After preincubation of the liver microsomes with lurasidone for 30 minutes, the effect of the neuroleptic on the enzyme activity was seen also at its lower concentration of 0.25 μM. Similar effects were observed in the liver microsomes derived from stressed control animals; however, in this case the effect of lurasidone on the CYP3A activity was less pronounced, i.e., preincubation with 0.25 μM lurasidone was not effective in the inhibition of testosterone 2β-hydroxylation. Moreover, weak or moderate inhibitory effects of 0.25 and 1 μM lurasidone on the CYP2A activity (the rate of 7α-hydroxylation of testosterone) and 1 μM lurasidone on the CYP2B activity (the rate of 16β-hydroxylation of testosterone) were observed. The metabolic reactions of testosterone representing the CYP2C11 activity (2α- and 16α-hydroxylation) were least affected and only by the higher (1 μM) concentration of lurasidone.

Discussion

The obtained results show significant effects of CMS and chronic lurasidone treatment on CYP expression and activity. They indicate that lurasidone differently influences CYP in nonstressed and stressed animals (summarized in Table 1).

CMS, an animal model of depression, significantly decreased the CYP2B activity and tended to do so to the CYP2B protein, but it produced an opposite effect on mRNA level, i.e., a tendency to increase the CYP2B1 and CYP2B2 mRNA level was observed. The CYP2C11 protein level was decreased by CMS, without a change in the enzyme.
activity or mRNA level. In the case of the CYP3A subfamily, its activity and the protein level of CYP3A2 were decreased by CMS (at an increased CYP3A1 protein), but no change in the mRNA level of the two CYP3A23/3A1 and CYP3A2 isoforms was noted. The observed noncorresponding changes in the activity, protein, and mRNA levels of the investigated CYP isoforms suggest some posttranscriptional or posttranslational modifications in CYP expression produced by CMS in the liver. The observed changes in CYP expression and activity may be caused by the ability of CMS to produce alterations in the function of the brain nervous system (Willner, 2016), which leads to the release of glucocorticoids and catecholamines, and modifications in the immune system (Kvetnansky et al., 2009; Jiang et al., 2014; Konstandi et al.,

Fig. 4. The effect of a 5-week treatment with lurasidone on the protein level of CYP2B, CYP2C11, CYP3A1, and CYP3A2 in rat liver microsomes from the CMS model. (A) Microsomal proteins, 10 μg, were subjected to the Western immunoblot analysis. Rat cDNA-expressed CYP2B1, CYP2C11, CYP3A1, and CYP3A2 isoforms (Supersomes) were used as standards. The original membranes of CYP2C11 and CYP3A23/3A1 were cut down to arrange protein bands according to the order of experimental groups presented in Fig. 4B. (B–D) Results are shown as the means (±S.E.M.) of data from six to eight rats per group. The results were analyzed using a multivariate analysis of variance, followed by a post hoc Duncan test, and statistical significance is shown as *P < 0.05; **P < 0.01; ***P < 0.001 compared with the nonstressed control and ##P < 0.01 compared with the stressed control or @P < 0.05; @@P < 0.01 compared with lurasidone nonstressed. CON, control.
2014; Tank and Lee Wong, 2015; Faron-Górecka et al., 2016; Rossetti et al., 2016). The aforementioned CMS-evoked physiopathologic changes in the concentrations of peripheral glucocorticoids, catecholamines, and cytokines affect hepatic signaling pathways mediating the regulation of CYP (Konstandi, 2013). Glucocorticoids are known to have complex (direct and/or indirect), mostly positive effects on the expression/activity of rat hepatic CYP2B (Waxman et al., 1990), CYP2C11 (Iber et al., 1997), and CYP3A (Huss and Kasper, 2000). However, these effects may be modified by catecholamines (adrenaline, noradrenaline) acting positively via hepatocyte α_1 and $\beta_{1/2}$ adrenergic receptor through the cAMP response element-binding protein pathway, but negatively via pancreatic β_2 receptor through the insulin pathway (Konstandi, 2013) on CYP expression (Konstandi, 2013). Moreover, CMS-induced immune disturbances that lead to elevation of plasma proinflammatory cytokines (interleukin-6, tumor necrosis factor-α, and tumor necrosis factor-γ) may additionally diminish enzyme expression (Zidek et al., 2009; Jiang et al., 2014).

The obtained results indicate that the effect of CMS on liver CYP is rather moderate and differs from the effects of other kinds of stress observed in rodents, such as repeated restraint stress (RS) or early-life maternal deprivation (MD) (Daskalopoulos et al., 2012b). As compared with CMS, the CYP3A2 expression was increased both in RS and MD rats, which was not the case in the CMS-exposed animals in our experiment. The expression of liver CYP2C11 and CYP3A1 was increased in MD, but not in RS rats, whereas in the CMS animals a decrease and an increase of those CYP isoforms, respectively, were observed. In contrast, the CYP2D activity was increased in RS, but not in MD or CMS subjects. In contrast, the CYP2B activity in RS rats was significantly suppressed (Konstandi et al., 2000) like in CMS animals in our study. The above-described stress-dependent differences in CYP expression and function support an earlier assumption that the effect of psychologic stress on CYP is stress type specific. The specificity of stress seems to be determined by the proportion of engagement of the brain stress circuits and peripheral nervous systems and, in consequence, the contribution of the neuroendocrine and sympathetic nervous systems to the regulation of liver CYP expression (Uyama et al., 2004; Kot et al., 2013; Chmielarz et al., 2015; Tank and Lee Wong, 2015).

Chronic lurasidone, which exerts antidepressant action in the CMS model of depression (Luoni et al., 2014), has been shown to be active in the regulation of the expression of some CYP isoforms in our experiment. Notably, its effect was different in nonstressed and stressed animals, in particular in the case of the CYP2B2 subfamily (summarized in Table 1). Lurasidone produced an opposite effect on CYP2B1 mRNA, CYP2B protein, and activity in nonstressed rats (an increase, a decrease, and a tendency to decrease, respectively) and stressed animals (a tendency to decrease, a tendency to increase, and an increase, respectively). Moreover, lurasidone decreased the activity of CYP2C11, the main CYP isoform in male rats, both in nonstressed and stressed rats, although it decreased the enzyme protein only in nonstressed animals, not affecting the levels of CYP2C11 mRNA in both groups of rats (nonstressed and stressed). As concerns the CYP3A subfamily, the neuroleptic affected its expression in both nonstressed and stressed rats in a similar manner (an increase in CYP3A23/3A1 mRNA and protein and in CYP3A2 mRNA); however, the CYP3A activity was enhanced only in stressed animals.

The observed difference in the CYP3A activity between the two groups of rats (nonstressed and stressed) after lurasidone treatment may be caused by different concentrations of reactive lurasidone metabolites, a greater amount of which may be formed in nonstressed than stressed animals. This is because the results of our experiment show that CMS

![Fig. 5. The effect of a 5-week treatment with lurasidone on the mRNA expression level of CYP2B1, CYP2B2, CYP2C11, CYP3A1, and CYP3A2 genes (A, B, C, D, and E, respectively) in the liver microsomes from the CMS model. Results are shown as the means (±S.E.M.) of data from 7 to 10 rats/group. The results were analyzed using a multivariate analysis of variance, followed by a post hoc Duncan test, and statistical significance is shown as *$P < 0.05$; **$P < 0.01$; ***$P < 0.001$ compared with the nonstressed control and $#P < 0.05$ compared with the stressed control or @$P < 0.05$ compared with lurasidone nonstressed. CON, control.](image-url)
incubation: 34.3

2003; Daniel et al., 2005; Haduch et al., 2006). This suggestion finds

Murray and Field, 1992; Bensoussan et al., 1995; Murray and Murray,
sants, and selective serotonin reuptake inhibitors, in vitro and in vivo
observed earlier for phenothiazine neuroleptics, tricyclic antidepres-
sion in nonstressed animals. This kind of phenomenon was
in turn, mask the functional effect of increased enzyme expression by the
generated during this process may inactivate the CYP3A protein and,

hydroxylation, and S-oxidation, and reactive metabolites possibly
lurasidone is extensively metabolized in vivo via N-dealkylation,
for the lurasidone metabolism (Caccia, 2011). As mentioned elsewhere,
decreases the activity of CYP3A, i.e., the enzyme primarily responsible
for the lurasidone metabolism (Caccia, 2011). As mentioned elsewhere,
lurasidone is extensively metabolized in vivo via N-dealkylation,
hydroxylation, and S-oxidation, and reactive metabolites possibly
generated during this process may inactivate the CYP3A protein and,
in turn, mask the functional effect of increased enzyme expression by the
neuroleptic in nonstressed animals. This kind of phenomenon was
observed earlier for phenothiazine neuroleptics, tricyclic antidepressants,
and selective serotonin reuptake inhibitors, in vitro and in vivo
(Murray and Field, 1992; Bensoussan et al., 1995; Murray and Murray,
2003; Daniel et al., 2005; Haduch et al., 2006). This suggestion finds
some support in the results of our in vitro study showing that lurasidone
added to control liver microsomes is more efficient in nonstressed rats
than in CMS animals in the inhibition of CYP3A activity measured as
the testosterone 2β-hydroxylation rate.

Finally, it should be mentioned that the observed effects of
lurasidone on CYP may be connected with the pharmacological
action of the neuroleptic, in particular with its antagonist activity at
dopaminergic D2, serotonergic 5-HT2, and adrenergic α2 receptors in
the brain and/or periphery, which affects the central (Wójcikowski
and Daniel, 2009; Sadykierska-Chudy et al., 2013; Rysz et al., 2015;
Daniel et al., 2017) and peripheral (Daskalopoulos et al., 2012a; Kot

dates the activity of CYP3A, i.e., the enzyme primarily responsible
for the lurasidone metabolism (Caccia, 2011). As mentioned elsewhere,
lurasidone is extensively metabolized in vivo via N-dealkylation,
hydroxylation, and S-oxidation, and reactive metabolites possibly
generated during this process may inactivate the CYP3A protein and,
in turn, mask the functional effect of increased enzyme expression by the
neuroleptic in nonstressed animals. This kind of phenomenon was
observed earlier for phenothiazine neuroleptics, tricyclic antidepressants,
and selective serotonin reuptake inhibitors, in vitro and in vivo
(Murray and Field, 1992; Bensoussan et al., 1995; Murray and Murray,
2003; Daniel et al., 2005; Haduch et al., 2006). This suggestion finds
some support in the results of our in vitro study showing that lurasidone
added to control liver microsomes is more efficient in nonstressed rats
than in CMS animals in the inhibition of CYP3A activity measured as
the testosterone 2β-hydroxylation rate.

Finally, it should be mentioned that the observed effects of
lurasidone on CYP may be connected with the pharmacological
action of the neuroleptic, in particular with its antagonist activity at
dopaminergic D2, serotonergic 5-HT2, and adrenergic α2 receptors in
the brain and/or periphery, which affects the central (Wójcikowski
and Daniel, 2009; Sadykierska-Chudy et al., 2013; Rysz et al., 2015;
Daniel et al., 2017) and peripheral (Daskalopoulos et al., 2012a; Kot

Fig. 6. The effect of lurasidone added in vitro to pooled liver microsomes of nonstressed and stressed (CMS) rats on the activity of CYP3A, CYP2B, CYP2C11, and
CYP2A, measured as the rate of testosterone 2β- and 6β-hydroxylation (A and B), 16β-hydroxylation (C), 2α- and 16α-hydroxylation (D and E), and 7α-hydroxylation (F),
respectively. All values are the mean ± S.E.M. (n = 5). The results were analyzed statistically using a multivariate analysis of variance, followed by a post hoc Duncan test.

Table 1: Summary of the effects of CMS and/or lurasidone on the activity, protein, and mRNA levels of liver CYP isoforms

<table>
<thead>
<tr>
<th>CMS</th>
<th>CYP1A2</th>
<th>CYP2A</th>
<th>CYP2B1</th>
<th>CYP2B2</th>
<th>CYP2C6</th>
<th>CYP2C11</th>
<th>CYP2D</th>
<th>CYP3A1</th>
<th>CYP3A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Protein</td>
<td>mRNA</td>
<td>No change</td>
<td>↓</td>
<td>No change</td>
<td>↓</td>
<td>No change</td>
<td>↓</td>
<td>No change</td>
</tr>
<tr>
<td>Lurasidone (vs. nonstressed control)</td>
<td>Activity</td>
<td>Protein</td>
<td>mRNA</td>
<td>No change</td>
<td>no change</td>
<td>No change</td>
<td>↓</td>
<td>No change</td>
<td>↓</td>
</tr>
<tr>
<td>CMS + Lurasidone (vs. stressed control)</td>
<td>Activity</td>
<td>Protein</td>
<td>mRNA</td>
<td>No change</td>
<td>↑</td>
<td>No change</td>
<td>↑</td>
<td>No change</td>
<td>↑</td>
</tr>
</tbody>
</table>
and Dautaj-Chavanie, 2016; Kot, 2017) endocrine regulation of CYP, and hepatic signaling pathways mediating enzyme expression.

CYP affects the brain monoaminergic neurotransmission (Willner, 2016), which may modify the action of lurasidone on the regulation of some CYP isoforms in stressed animals. Combinations of atypical neuroleptics and antidepressants or antiepileptics are frequently used by clinicians, which may lead to pharmacodynamic and/or pharmacokinetic interactions (Kennedy et al., 2013; Spina and De Leon, 2014). Chronic lurasidone was found to modestly increase plasma concentration of the specific CYP3A4 substrate midazolam in patients with schizophrenia or schizoaffective disorders (Chiu et al., 2014). However, its possible effects on the pharmacokinetics of antidepressant drugs that are metabolized by CYP3A isoforms have been investigated neither in volunteers and depressive patients nor in an animal model of depression, as yet.

In summary, the present findings indicate that 1) CYP moderately affects CYP (CYP2B, CYP2C11, and CYP3A), and its effects are different from those observed after other kinds of psychologic stress, such as repeated RS or early-life MD; 2) chronic lurasidone influences the expression and/or activity of CYP2B, CYP2C11, and CYP3A isoforms; and 3) CYP modifies the action of lurasidone on CYP expression and function, leading to the different effects of the neuroleptic in nonstressed and stressed rats. Future studies will focus on testing whether the metabolism of endogenous substrates (e.g., steroids) and drugs, catalyzed by the isoforms CYP2B, CYP2C11, or CYP3A, proceeds at a different rate in the two groups of animals (nonstressed and stressed) in the rat CMS model.

Authorship Contributions

Participated in research design: Daniel, Papp.

Conducted experiments: Kot (biochemical study), Haduch, Papp (in vivo study).

Performed data analysis: Kot, Daniel.

Wrote or contributed to the writing of the manuscript: Daniel, Kot, Papp.

References

Btto J and Dvorak Z (2011) Role of retinoids, rexinoids and thyroid hormone in the expression of CYP3A4 substrate midazolam in patients with schizophrenia or schizoaffective disorders (Chiu et al., 2014). However, its possible effects on the pharmacokinetics of antidepressant drugs that are metabolized by CYP3A isoforms have been investigated neither in volunteers and depressive patients nor in an animal model of depression, as yet.

In summary, the present findings indicate that 1) CYP moderately affects CYP (CYP2B, CYP2C11, and CYP3A), and its effects are different from those observed after other kinds of psychologic stress, such as repeated RS or early-life MD; 2) chronic lurasidone influences the expression and/or activity of CYP2B, CYP2C11, and CYP3A isoforms; and 3) CYP modifies the action of lurasidone on CYP expression and function, leading to the different effects of the neuroleptic in nonstressed and stressed rats. Future studies will focus on testing whether the metabolism of endogenous substrates (e.g., steroids) and drugs, catalyzed by the isoforms CYP2B, CYP2C11, or CYP3A, proceeds at a different rate in the two groups of animals (nonstressed and stressed) in the rat CMS model.

Authorship Contributions

Participated in research design: Daniel, Papp.

Conducted experiments: Kot (biochemical study), Haduch, Papp (in vivo study).

Performed data analysis: Kot, Daniel.

Wrote or contributed to the writing of the manuscript: Daniel, Kot, Papp.

References

Capuzzi E, Bartoli F, Crocamo C, Clerici M, and Carrà G (2017) Acute variations of cytokine expression and function, leading to the different effects of the neuroleptic in nonstressed and stressed rats. Future studies will focus on testing whether the metabolism of endogenous substrates (e.g., steroids) and drugs, catalyzed by the isoforms CYP2B, CYP2C11, or CYP3A, proceeds at a different rate in the two groups of animals (nonstressed and stressed) in the rat CMS model.

Authorship Contributions

Participated in research design: Daniel, Papp.

Conducted experiments: Kot (biochemical study), Haduch, Papp (in vivo study).

Performed data analysis: Kot, Daniel.

Wrote or contributed to the writing of the manuscript: Daniel, Kot, Papp.

References

Capuzzi E, Bartoli F, Crocamo C, Clerici M, and Carrà G (2017) Acute variations of cytokine expression and function, leading to the different effects of the neuroleptic in nonstressed and stressed rats. Future studies will focus on testing whether the metabolism of endogenous substrates (e.g., steroids) and drugs, catalyzed by the isoforms CYP2B, CYP2C11, or CYP3A, proceeds at a different rate in the two groups of animals (nonstressed and stressed) in the rat CMS model.