Assessing the Risk of Drug-Induced Cholestasis Using Unbound Intrahepatic Concentrations

Julia Riede, Birk Poller, Jörg Huwyler, and Gian Camenisch

Division of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.R., B.P., G.C.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (J.R., J.H.)

Received November 16, 2016; accepted March 1, 2017

ABSTRACT

Inhibition of the bile salt export pump (BSEP) has been recognized as a key factor in the development of drug-induced cholestasis (DIC). The risk of DIC in humans has been previously assessed using in vitro BSEP inhibition data (IC50) and unbound systemic drug exposure under assumption of the “free drug hypothesis.” This concept, however, is unlikely valid, as unbound intrahepatic drug concentrations are affected by active transport and metabolism. To investigate this hypothesis, we experimentally determined the in vitro liver-to-blood partition coefficient for unbound drug at the hepatic inlet (Kpuu) for 18 drug compounds using the hepatic extended clearance model (ECM). In vitro-in vivo translatability of Kpuu values was verified for a subset of compounds in rat. Consequently, unbound intrahepatic concentrations were calculated from clinical exposure (systemic and hepatic inlet) and measured Kpuu data. Using these values, corresponding safety margins against BSEP IC50 values were determined and compared with the clinical incidence of DIC. Depending on the ECM class of a drug, in vitro Kpuu values deviated up to 14-fold from unity, and unbound intrahepatic concentrations were affected accordingly. The use of in vitro Kpuu-based safety margins allowed separation of clinical cholestasis frequency into three classes (no cholestasis, cholestasis in ≤2%, and cholestasis in >2% of subjects) for 17 out of 18 compounds. This assessment was significantly superior compared with using unbound extracellular concentrations as a surrogate for intrahepatic concentrations. Furthermore, the assessment of Kpuu according to ECM provides useful guidance for the quantitative evaluation of genetic and physiologic risk factors for the development of cholestasis.

Introduction

The liver is the major organ involved in the elimination of potentially harmful endogenous and xenobiotic substances, including pharmaceuticals, and it is itself predisposed to toxicity resulting from high exposure to drugs and their metabolites. Drug-induced liver injury (DILI) is a leading cause of acute liver failure, termination of compounds in drug development, and drug withdrawal from the market (Lee, 2003; Food and Drug Administration, 2009). The severity of DILI ranges from asymptomatic elevations of liver enzymes to acute liver failure and manifests with hepatocellular, cholestatic, or mixed (hepatocellular/cholestatic) patterns. Although drug-induced cholestasis (DIC) usually represents a less severe form of DILI, it is nevertheless reported to account for up to 26% of all hepatic adverse reactions (Bjornsson and Olsson, 2005; Hussaini and Farrington, 2007). Cholestasis is characterized by reduced bile flow, potentially resulting in accumulation of cytotoxic bile salts within hepatocytes, leading to liver damage (Stieger, 2010). The bile salt export pump (BSEP), a member of the ATP-binding cassette superfamily encoded by the ABCB11 gene, is expressed at the canalicular membrane of hepatocytes and plays a fundamental role in bile homeostasis by secreting bile acids from the hepatocyte into bile ducts. Impairment of BSEP function due to inhibition by drugs or genetic defects was previously identified as a key factor in the development of DIC, hereditary cholestatic syndromes, or intrahepatic cholestasis of pregnancy (Stieger et al., 2000; Fattinger et al., 2001; Funk et al., 2001; Pauli-Magnus et al., 2010; Dietrich and Geier, 2014). Several attempts have been made to predict DIC or DILI in humans from in vitro BSEP inhibition data due to limited translatability of hepatic adverse events from preclinical models (Olson et al., 2000). Recently, Dawson et al. (2012) and Morgan et al. (2013) demonstrated that potent BSEP in vitro inhibition and high systemic drug exposure correlate with the occurrence of DIC. However, the assessments did not allow clear separation of cholestatic/mixed from non-cholestatic drugs, and thus reliable prediction of DIC remains challenging.

Clinical drug toxicity, drug-drug interactions (DDIs), and pharmacological drug-target interactions are commonly anticipated by relating the in vitro potent IC50, Ki, or EC50 value to the unbound (i.e., free)
systemic drug concentration due to limited availability of tissue concentration data in humans (Muller and Milton, 2012; Zamek-Gliszczynski et al., 2013). This assessment is based on the “free drug hypothesis,” which assumes complete distribution equilibrium of the unbound drug between blood and tissue at steady state. This assumption, however, is unlikely to apply to organs such as the liver, where the distribution equilibrium is affected by active cellular transport and metabolic processes (Chu et al., 2013). Therefore, recent publications proposed estimating the unbound intracellular liver concentration using the liver-to-blood partition coefficient for unbound drug at steady state (K_{puu}) in vitro (Yabe et al., 2011; Mateus et al., 2013; Pfeifer et al., 2013; Shitara et al., 2013; Camenisch, 2012). According to the concept of the hepatic extended clearance model (ECM), the in vitro (hepatocyte-to-medium) K_{puu} can be derived from in vitro measurements of individual hepatic elimination process clearances (sinusoidal influx and efflux, metabolism, and biliary secretion), which govern hepatic elimination (Fig. 1) (Shitara et al., 2013; Camenisch et al., 2015; Camenisch, 2016). Measurements of individual hepatic process clearances additionally allow assignment of compounds into four distinct ECM categories to anticipate class-dependent effects on K_{puu} and, as a consequence, on the unbound intrahepatic concentration (Fig. 2) (Camenisch et al., 2015; Camenisch, 2016).

The aim of the present study was to identify the reference drug concentration (unbound systemic, unbound hepatic inlet, or unbound intrahepatic concentration) that provides the best anticipation of DIC risk due to BSEP inhibition. Upon assessing in vitro–in vivo correlation (IVIVC) for K_{puu} in rat using literature data, we experimentally determined human hepatic in vitro K_{puu} values using the ECM concept for 18 drug compounds with diverse physicochemical and pharmacokinetic properties. Unbound intrahepatic concentrations in humans were estimated by applying ECM-based K_{puu} to either unbound systemic or hepatic inlet concentrations. The resulting safety margins between in vitro BSEP IC_{50} and the various reference concentrations were compared with the clinical incidence of DIC. In addition, the potential impact of genetic and physiologic risk factors on the induction of cholestasis is discussed using bosentan as tool compound.

Materials and Methods

Materials. Radiolabeled test compounds ([3H] or [14C]) were obtained from PerkinElmer (Boston, MA), American Radiolabeled Chemicals (St. Louis, MO), and Moravek Biochemicals (Brea, CA). Radiochemical purity of all compounds was ≥95% as determined in-house by high-performance liquid chromatography analysis. All other chemicals were purchased from commercial sources and were of analytical grade.

Determination of Hepatic In Vitro K_{puu}. Previous work performed by our group has shown that in vivo hepatic organ clearances (CL_{hep}) were correctly predicted by feeding up-scaled in vitro hepatic process clearances into the ECM (eq. 1) and by applying the “well stirred” liver model (eq. 2) (Camenisch and Umehara, 2012; Umehara and Camenisch, 2012; Kunze et al., 2014, 2015).

\[
\frac{\text{CL}_{\text{hep} \text{int}}} = \frac{\text{PS}_{\text{inf,act}} + \text{PS}_{\text{inf,pass}}}{\text{PS}_{\text{eff,act}} + \text{PS}_{\text{eff,pass}} + \text{CL}_{\text{int,met}} + \text{CL}_{\text{int,sec}}} \times \left( \text{CL}_{\text{int,met}} + \text{CL}_{\text{int,sec}} \right)
\]

where CL_{hep,int} is the intrinsic hepatic clearance, PS_{inf,act} is the sum of active (PS_{inf,act}) and passive uptake membrane permeability (PS_{inf,pass}), PS_{eff} is the sum of active (PS_{eff,act}) and passive sinusoidal efflux membrane permeability (PS_{eff,pass}), CL_{int} is the sum of intrinsic metabolic (CL_{int,met}) and biliary clearances (CL_{int,sec}), Q_{h} is the hepatic blood flow, and f_{ub} is the unbound fraction in blood.

This in vitro–in vivo extrapolation approach for human and rat hepatic clearance provided a good prediction accuracy for a diverse data set of 13 compounds with ~80% within 2-fold error (Camenisch and Umehara, 2012; Umehara and Camenisch, 2012). According to the concept of the ECM, the intrinsic clearance is driven by the intrahepatic concentration (Shitara et al., 2013), and eq. 1 can be rearranged as follows:

\[
\text{CL}_{\text{hep, int}} = \text{K}_{\text{puu}} \times \text{CL}_{\text{int}}
\]

Hepatic Process Clearances. Hepatic process clearances for 18 test compounds were experimentally determined as previously described in full detail elsewhere (Camenisch and Umehara, 2012; Umehara and Camenisch, 2012; Kunze et al., 2014, 2015). All presented in vitro data for atorvastatin, cerivastatin, cyclosporine A, fluvasatin, ketoconazole, lovastatin acid, pitavastatin,
Unbound Intrahepatic Drug Concentrations Predict Cholestasis 525

Additionally, maximum unbound hepatic inlet concentrations (C_{inlet,max,u}) representing a “worst-case” were calculated according to eq. 8 assuming complete and fast drug absorption (i.e., F_{p} \times F_{g} = 1) and k_{s} = 0.1 min^{-1} (Ito et al., 1998).

Unbound intracellular drug concentrations in the hepatocyte [hereafter referred to as unbound intrahepatic concentration (C_{hep,u})] were calculated on the basis of C_{sys,u} (eq. 9), C_{inlet,u} (eq. 10), or C_{inlet,max,u} (eq. 11):

\[
C_{hep,u} = C_{sys,u} \times k_{puu}
\]

All clinical exposure data, pharmacokinetic parameters, and calculations thereof are provided in the Supplemental Material together with the corresponding literature references (Supplemental Tables 1–3).

Human BSEP IC_{50} Values. In vitro IC_{50} data for BSEP inhibition were collected from the literature. In the case of multiple reported values, the lowest one was used for risk assessments (Table 1), whereas Supplemental Table 4 shows the range of reported data. All data were determined under comparable conditions using membrane vesicles expressing human BSEP with [^{3}H]taurocholate as probe substrate.

Cholestasis Classification. Cholestasis annotation was carried out exclusively on the basis of clinical studies, drug labels, and a comprehensive literature search where cholestasis or mixed liver injury was observed under controlled conditions (i.e., declaration of comedication, underlying disease state, known dosing regimen). Drugs were categorized as “cholestatic” on reports of one of the following adverse events: cholestasis, cholestatic liver injury, cholestatic jaundice, cholestatic hepatitis, mixed liver injury, or biochemical evidence of cholestasis or mixed liver injury in the form of elevated serum alkaline phosphatase (AP) (AP > 2 × upper limit of normal (ULN)) and ratio between alanine aminotransferase (ULN) and AP (ULN < 5) (Council for International Organizations of Medical Sciences, 1999). Based on the reported cholestasis incidence, drugs were assigned to the subclasses “common” (>2% of subjects) or “rare” (≤2% of subjects). In the absence of the previously defined cholestasis events, drugs were categorized as “no cholestasis.” The threshold of 2% was selected based on literature information from clinical reports or from the drug label, where rare adverse events were commonly defined as <2%. Detailed cholestasis annotations and literature references are summarized in Supplemental Table 4.

Data Analysis. The DIC risk was assessed based on safety margins, calculated as the ratio between BSEP IC_{50} and the unbound intrahepatic drug concentration. Following the static R-value approach for reversible enzyme or transporter inhibition and using C_{max,u} as the basis for unbound intrahepatic concentrations, the assessment represents a “worst-case” scenario for DIC (Rowland and Matin, 1973). Receiver operating characteristic (ROC) curve analysis (OriginPro 2016; OriginLab Corporation, Northampton, MA) was used to determine the optimal cut-off values (safety margin thresholds) between the three different cholestasis classes and to evaluate the accuracy with which cholestasis classes can be separated. ROC analysis calculates the sensitivity (fraction of true positive (TP) classifications) and specificity (fraction of true negative (TN) classifications) for any possible cut-off value and plots sensitivity against 1 – specificity, representing the ROC curve. The optimal cut-off values correspond to the maximum rate of correct positive and negative classifications and were determined by minimizing the distance (d) between point [0,1] in the ROC space (where sensitivity and specificity are maximum) and any point on the ROC curve (Kumar and Indrayan, 2011):

\[
d^2 = (1-TP)^2 + (1-TN)^2
\]

The separation of cholestasis classes by the estimated safety margin thresholds was compared using the area under the ROC curves (ROC AUCs), where 1.0 represents a perfect discrimination between two classes, and 0.5 represents the poorest discrimination.

Quantification of Physiologic and Genetic Factors. A theoretical assessment for the impact of disease state and polymorphic pathways on DIC was conducted using bosentan as an example drug compound. The impact of disease state and genotype on concentrations was estimated based on literature observations that pulmonary arterial hypertension (PAH) patients show 2-fold increased systemic bosentan concentrations compared with healthy volunteers (Dingemanse and van Giersbergen, 2004). The resulting hepatic inlet and intrahepatic concentrations were calculated according to eqs. 8 and 10 using a C_{sys,u} value of 0.1327 μM.

pravastatin, rosuvastatin, simvastatin acid, and verapamil were taken from Camenisich and Umehara (2012) and Kunze et al. (2015).

In brief, PS_{eff,fum} and PS_{inf,fum} were determined in pooled suspended human hepatocytes using the oil-spin method. PS_{inf,act} and PS_{inf,pas} represent single time-point measurements within the linear time and concentration range, and PS_{inf,fum} was determined in the presence of uptake transporter inhibitors or at high substrate concentrations where active transport processes are known to be saturated. Measured (apparent) uptake clearances were corrected for nonspecific binding to the assay device using radioactivity recoveries and for saturable binding to cell surfaces using data from control incubations at 4°C (Kumze et al., 2014). For the highly lipophilic compounds ketoconazole and azatavir (logD_{7.4} > 4), PS_{fum} was determined from the slope of initial uptake velocity (3 time points between 0.5 and 3 minutes), taking into account initial cellular binding and nonspecific binding to the assay device.

PS_{eff} was assumed to occur only via passive diffusion and to be equal to PS_{inf,fum} (PS_{eff,act} = 0, PS_{eff,pas} = PS_{inf,fum}). Apparent metabolic clearance (CL_{int,met}) was determined using human liver microsomes. Incubations with all test compounds were performed in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The known uridine diphosphate (UDP) glucuronosyltransferase (substrates ceftriaxone, fluvastatin, ibuprofen, pitavastatin, and simvastatin acid were additionally incubated in the presence of UDP, and CL_{int,met} represents the sum of NADPH and UDP incubations. CL_{int,act,app} values were corrected for the unbound fraction in liver microsomes (f_{unbound}) as follows:

\[
CL_{int,act} = \frac{CL_{int,act,app}}{fu_{hep}}
\]

Values for f_{unbound} and corresponding literature references are provided in Supplemental Table 1.

Apparent biliary clearance (CL_{int,bil}) was determined in sandwich-cultured human hepatocytes (B-CLEAR method; Qualyst, Inc., Durham, NC) and was corrected for the unbound fraction in hepatocytes (f_{unbound}) as given in eq. 5:

\[
CL_{int,bil} = \frac{CL_{int,bil,app}}{fu_{hep}}
\]

Values for f_{hep} and corresponding literature references are provided in Supplemental Table 1.

The in vitro clearances were up-scaled to human organ level (ml/min/kg) using the following scaling factors: 99 (10^6 cells/g liver) for suspended hepatocytes, 53 (mg protein/g liver) for human liver microsomes, 116 (mg protein/g liver) for sandwich-cultured hepatocytes, and 25.7 (g liver/kg body weight) for liver weight.

Calculation of Unbound Drug Concentrations in the Systemic Circulation, at the Hepatic Inlet, and in the Hepatocyte. Unbound drug concentrations in blood and plasma are equal (Kwon, 2001) and herein are referred to as unbound systemic drug concentrations (C_{sys,u}). C_{sys,u} was calculated from the total range of reported data. All data were determined under comparable conditions using membrane vesicles expressing human BSEP with [^{3}H]taurocholate as probe substrate.

\[
C_{sys,u} = C_{max} \times f_u_p
\]

According to eq. 8, unbound drug concentrations at the hepatic inlet (C_{inlet,u}) were calculated as the sum of drug in the systemic circulation reaching the liver via the hepatic artery (i.e., C_{sys,u}) and drug that is delivered by the portal vein upon intestinal absorption (Giacomini et al., 2010):

\[
C_{inlet,u} = C_{sys,u} + f_u_p \times k_s \times F_p \times F_g \times D
\]

where k_{s} is the absorption rate constant, F_{p} is the fraction absorbed, F_{g} is the fraction escaping gut metabolism, D is the maximum recommended single oral dose, Q_{b} is the hepatic blood flow (1.45 l/min), and R_{b} is the blood-to-plasma partition coefficient.

Additionally, maximum unbound hepatic inlet concentrations (C_{inlet,max,u}) representing a “worst-case” were calculated according to eq. 8 assuming complete and fast drug absorption (i.e., F_{p} \times F_{g} = 1) and k_{s} = 0.1 min^{-1} (Ito et al., 1998).
In vitro process clearances, in vitro Kp_{hu} and human drug exposure

ECM classes were derived as described in Fig. 2. Unbound extracellular (systemic and hepatic inlet) and intrahepatic concentrations were calculated as described in Materials and Methods, and all required pharmacokinetic parameters and corresponding literature references are summarized in Supplemental Tables 1–3. Literature references for BSEP IC_{50} values are provided in Supplemental Table 4; presented data represent the lowest available IC_{50} value.

<table>
<thead>
<tr>
<th>Drug Compounds</th>
<th>Hepatic Process Clearances</th>
<th>In Vitro Kp_{hu}</th>
<th>Unbound Extracellular Concentrations</th>
<th>Unbound Intrahepatic Concentrations</th>
<th>BSEP Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PS_{inf,act}</td>
<td>PS_{inf,act}</td>
<td>CL_{inf,act}</td>
<td>CL_{inf,act}</td>
<td>m\text{mL/min/kg}</td>
</tr>
<tr>
<td>ECM class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Ketocanazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Imatinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Verapamil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71.8</td>
</tr>
<tr>
<td>Refrigerated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140.3</td>
</tr>
<tr>
<td>Cyclosporine A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113.2</td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.2</td>
</tr>
<tr>
<td>Lovastatin acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165.1</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.6</td>
</tr>
<tr>
<td>Simvastatin acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116.1</td>
</tr>
</tbody>
</table>

Table 4; presented data represent the lowest available IC_{50} value.

The effect of nonsynonymous polymorphisms of hepatic metabolic enzymes and transporters on the in vitro Kp_{hu} of bosentan was calculated according to eq. 13 using measured in vitro process clearances (Table 1), their fractional in vivo contribution (fn), and reported fold changes in activity compared with the reference genotype (α).

\[
K_{p_{hu}} = \frac{\alpha_{\text{ECM1}} \times PS_{\text{inf,act}} + \alpha_{\text{ECM2}} \times PS_{\text{inf,act}} + \alpha_{\text{ECM3}} \times PS_{\text{inf,act}} + \alpha_{\text{ECM4}} \times PS_{\text{inf,act}}}{\alpha_{\text{ECM1}} + \alpha_{\text{ECM2}} + \alpha_{\text{ECM3}} + \alpha_{\text{ECM4}}}
\]

The α values used were determined from the following data. Increased activity was reported for the organic anion transporting polypeptide (OATP) variants OATP1B1*/1b and OATP1B3*/2 (α_{OATP1B1} = 0.5; Rowland and Matin, 1973; Letschert et al., 2004). The cytochrome P450 variants CYP3A4 = 2 and CYP2C9 = 1 are associated with loss of function (α_{CYP3A4} = 0.5; Lee et al., 2002; Werk and Cascorbi, 2014), similar to the multidrug resistance protein (MRP) 2 variant MRP2*16 (c.2302C>T) (Hulot et al., 2005; Pratt et al., 2015). According to the literature, OATP1B1 and OATP1B3 equally contribute to the total active hepatic uptake of bosentan (α_{OATP1B1} = 0.5) (Treiber et al., 2007). Hepatic metabolism is mediated by CYP3A4 (α_{CYP3A4} = 0.5) and CYP2C9 (α_{CYP2C9} = 0.5) (Gengemer and van Giersbergen, 2004), and biliary secretion is mediated by MRP2 (α_{MRP2} = 1.0) (Fahrmayr et al., 2013).

To estimate the potential impact of BSEP polymorphisms on the DI safety margin, reduced BSEP activity was assumed to mimic an increased inhibition potential, where 100% activity corresponds to the BSEP IC_{50} value of bosentan (22 μM). According to the literature, BSEP G855R (c.2563G>C) has <20% transport activity compared with nonpolymorphic BSEP (Lang et al., 2007), which was simulated using a 5-fold reduced BSEP IC_{50} value (4.4 μM).

**Results**

**Kp_{hu} and ECM Class Assignment.** In vitro measured hepatic process clearances for the 18 investigated drug compounds are summarized in Table 1 together with the resulting in vitro Kp_{hu} values, which range from 0.07 to 2.41. Figure 3 displays the corresponding fold change in intrahepatic unbound drug concentrations (C_{hep,act}) calculated from extracellular clearances and in vitro Kp_{hu} where atazanavir and pravastatin represent the extremes with ~14-fold decreased and ~2.4-fold increased C_{hep,act} respectively.

Compound classification according to ECM is based on the extent of individual hepatic in vitro clearance processes (Fig. 2). As hepatic clearance processes significantly impact intrahepatic concentrations, as illustrated in Figs. 2 and 3, ECM class-dependent effects on Kp_{hu} values can be expected. For the ECM class 1 compound ketocanazole, a Kp_{hu} value < 1 was obtained as a result of a predominant intrinsic clearance contribution (i.e., PS_{eff} + CL_{act} > PS_{inf}). On the other hand, for ECM class 2 compounds imatinib and verapamil, Kp_{hu} was mainly determined by passive uptake and efflux processes and, consequently, approached values of 1 (i.e., PS_{eff} + CL_{inf} ≈ PS_{inf}). For the ECM class 3 compounds with predominant intrinsic clearance (atazanavir, erythromycin, ibuprofen, lovastatin acid, rosiglitazone, and simvastatin acid), Kp_{hu} values < 1 were obtained (i.e., PS_{eff} + CL_{inf} > PS_{inf}). The ECM class 3 compounds with substantial active hepatic uptake — namely, atorvastatin and cyclosporine A — exhibit Kp_{hu} values > 1 (i.e., PS_{eff} + CL_{inf} < PS_{inf}). Similarly, the ECM class 4 compounds bosentan, cerivastatin, fluvastatin, glibenclamide, pitavastatin, pravastatin, and rosuvastatin reveal Kp_{hu} values > 1 due to predominant hepatic uptake (i.e., PS_{inf} + CL_{inf} < PS_{inf}).

**In Vitro-In Vivo Correlation of Kp_{hu} in Rat.** Estimation of C_{hep,act} using ECM-based in vitro Kp_{hu} data implies that the in vitro Kp_{hu} directly translates to in vivo Kp_{hu}. We made this assumption based on previous successful applications of the ECM approach for hepatic clearance and DDI predictions (Camenisch and Umehara, 2012; Umehara and Camenisch, 2012; Kunze et al., 2015). To further validate the ECM concept, we performed an IVIVC for Kp_{hu} in rat using...
published in-house data (Umehara and Camenisch, 2012) (Fig. 4). In addition, IVIVC of reported in vitro Kpuu values from initial rate hepatic uptake clearances in suspended hepatocytes (Yabe et al., 2011; Shitara et al., 2013) and from sandwich-cultured hepatocytes (Pfeifer et al., 2013) is shown in Fig. 4. Observed (in vivo) and predicted (in vitro) Kpuu data following the ECM concept were in good agreement, with all five compounds deviating by less than 2.5-fold. Also, Kpuu from rat sandwich-cultured hepatocytes demonstrated close IVIVC for three compounds. In contrast, in vitro Kpuu from suspended hepatocytes generally provided overestimations of in vivo Kpuu, most likely due to the absence of intrinsic clearance processes (metabolism and biliary secretion).

For atorvastatin, cyclosporine A, and verapamil, different ECM classes were assigned for rat and human due to different contributions of the individual clearance processes. The impact of in vitro and in vivo Kpuu values in rats, however, was in line with the ECM theory described earlier (ECM class 1: Kpuu < 1; ECM class 4: Kpuu > 1).

Correlation between BSEP Inhibition, Drug Concentrations, and Drug-Induced Cholestasis. The assignments of the 18 test drug compounds into the three cholestasis frequency classes (“no,” “rare,” “common”) are shown in Table 2. Risk assessments with regard to DIC were conducted using safety margins calculated as the ratio of BSEP IC50 and either unbound extracellular drug concentrations (Csys,u or Cinlet,u) or unbound intrahepatic concentrations upon application of Kpuu (Chep,sys,u or Chep,inlet,u) (Fig. 5). The risk assessment with unbound systemic concentrations showed a separation between drugs in cholestasis classes “common” and “no cholestasis,” whereas drugs in the class “rare” markedly overlapped with drugs in the other classes (Fig. 5A). The separation of drugs in cholestasis class “rare” from “common” or “no cholestasis” was not improved by using the substantially higher unbound drug concentrations at the hepatic inlet (Fig. 5B). This incomplete separation of the cholestasis classes based on extracellular concentrations is reflected by ROC AUC values of 0.83–0.94. In contrast, the use of unbound intrahepatic drug concentrations following Kpuu correction markedly enhanced the separation between the three cholestasis classes. The risk assessment based on Chep,sys,u provided a good separation between the three classes, with only one drug (rosiglitazone, class “no”) being clearly mispredicted (Fig. 5C). The risk assessment was further improved by using Kpuu-corrected unbound hepatic inlet concentrations. Using this reference concentration, an almost complete separation of all drugs into classes “no,” “rare,” and “common” was achieved (Fig. 5D), as supported by ROC AUC values ≥0.97. Using Chep,inlet,u as a reference, safety margin thresholds
between classes “common”/“rare” and “rare”/“no” of 26 and 529, respectively, were obtained (Fig. 5D). These thresholds are clearly lower than those obtained from risk assessments using unbound extracellular concentrations (Fig. 5, A and B; “common”/“rare”: 100 and 59, “rare”/“no”: 3821 and 728 for \(C_{\text{sys, u}}\) and \(C_{\text{inlet, u}}\), respectively). Using \(C_{\text{hep, inlet, u}}\) the safety margin of simvastatin was reduced to 584-fold compared with 69,667-fold based on \(C_{\text{hep, sys, u}}\), representing the largest safety margin change within our test set.

Additionally, maximum (worst-case) unbound hepatic inlet concentrations (\(C_{\text{inlet, max, u}}\)) were calculated to represent the situation during early drug development, where no clinical data are available. Assuming fast and complete intestinal absorption, substantially higher unbound intrahepatic concentrations were obtained compared to using measured clinical parameters. Whereas the resulting ratios still allowed separation of “common” from “rare” cholestasis events, the separation between “no” and “rare” was poorer than that obtained in risk assessments based on measured clinical parameters (Fig. 5D vs. Fig. 5E).

Quantification of Risk Factors for DIC. The theoretical impact of disease state and polymorphic hepatic enzymes and transporters on bosentan-induced cholestasis was estimated based on clinical systemic exposure and in vitro enzyme and transporter polymorphism data (Fig. 6).

### Table 2

<table>
<thead>
<tr>
<th>Cholestasis Classification</th>
<th>Drug Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common (≥2%)</td>
<td>Bosentan (1000 mg BID), cyclosporine A, erythromycin, imatinib</td>
</tr>
<tr>
<td>Rare (≤2%)</td>
<td>Atazanavir, atorvastatin, bosentan (125 mg BID), glibenclamide, ibuprofen, ketoconazole, pitavastatin, pravastatin, verapamil</td>
</tr>
<tr>
<td>No cholestasis</td>
<td>Cerivastatin, fluvastatin, lovastatin acid, rosiglitazone, rosuvastatin, simvastatin acid</td>
</tr>
</tbody>
</table>

Bosentan was assigned to the classes “common” and “rare” depending on the administered dose [1000 and 125 mg twice daily (BID), respectively]. Literature references and detailed annotations are summarized in Supplemental Table 4.

---

Fig. 5. Correlation between BSEP inhibition, drug concentration, and drug-induced cholestasis. Safety margins for all 18 drug compounds representing the ratio of BSEP IC\(_{50}\) value and unbound systemic concentration (\(C_{\text{sys, u}}\)) (A), unbound concentration at the hepatic inlet (\(C_{\text{inlet, u}}\)) (B), unbound intrahepatic concentration on basis of \(C_{\text{sys, u}}\) (\(C_{\text{hep, sys, u}}\)) (C), unbound intrahepatic concentration on basis of \(C_{\text{inlet, u}}\) (\(C_{\text{hep, inlet, u}}\)) (D), and worst-case assessment of maximum unbound intrahepatic concentration (\(C_{\text{hep, inlet, max, u}}\)) (E). Red, yellow, and green symbols represent the cholestasis classes “common”, “rare”, and “no cholestasis”, respectively. Squares, circles, triangles, and diamonds represent the ECM classes 1, 2, 3, and 4, respectively. Estimated safety margin thresholds between the cholestasis classes “common”/“rare” and “rare”/“no cholestasis” are shown next to dashed lines with ROC AUCs in brackets.
PAH patients compared with healthy subjects (Dingemans and van Giersbergen, 2004). Based on this, we calculated the corresponding \( C_{\text{hep,inlet}} \) in PAH patients (0.1901 \( \mu \text{M} \)), which is 69% higher than in healthy subjects (Fig. 6, healthy vs. PAH patients). Next, we calculated \( K_{\text{vaso}} \) and \( C_{\text{hep,inlet}} \) and corresponding safety margins for bosentan using altered transporter and enzyme activities due to genetic polymorphisms according to eq. 13. Our assessment indicates that the increased transport activity of OATP1B1*1b or OATP1B3*2 variants would increase \( K_{\text{vaso}} \) and \( C_{\text{hep,inlet}} \) by 17% (Fig. 6, “PAH patients” vs. “OATP1B1*1b” or “OATP1B3*2”). Loss-of-function mutations in CYP3A4, CYP2C9, and MRPl would result in increases in both \( K_{\text{vaso}} \) and \( C_{\text{hep,inlet}} \) by 14, 9, and 1%, respectively (Fig. 6, “PAH patients” vs. “CYP3A4*20”, “CYP2C9*3”, or “MRPl*16”). The assumption of concurrence of all these genetic variants leads to predicted increases of \( K_{\text{vaso}} \) and \( C_{\text{hep,inlet}} \) by 70% and a reduction of the safety margin from 116 to 68 (Fig. 6, “PAH patients” vs. “CYP3A4*20, CYP2C9*3, MRPl*16, OATP1B1*1b, OATP1B3*2”). Additionally, we evaluated the potential impact of BSEP polymorphisms on the DIC risk assessment. Presence of the low-activity variant BSEP G885R was simulated using a 5-fold reduced BSEP IC50 value (4.4 \( \mu \text{M} \)). This estimation leads to a 23-fold safety margin (Fig. 6, “PAH patients” vs. “BSEP G885R”). The theoretical combination of the BSEP G885R variant with genetic variants that affect the \( K_{\text{vaso}} \) of bosentan would further increase the DIC risk, as shown in Fig. 6 (“PAH patients” vs. “BSEP G885R, CYP3A4*20, CYP2C9*3, MRPl*16, OATP1B1*1b, OATP1B3*2”).

**Discussion**

In the present work, we compare the use of unbound extracellular (systemic and hepatic inlet) or \( K_{\text{vaso}} \)-based intrahepatic concentrations in risk assessments of cholestasis upon BSEP inhibition.

Our work follows up on recent studies, which investigated the impact of systemic drug exposure on the clinical manifestation of DIC or DILI. Using safety margin ratios of BSEP IC50 to systemic drug concentration, our analyses revealed a generally increased risk of DIC among drugs with lower safety margins (Fig. 5A). However, no reliable separation of cholestatic and non-cholestatic drugs was obtained from this assessment. The outcome was not improved when hepatic inlet concentrations were used for safety margin calculations (Fig. 5B), even though this concentration is considered most relevant with regard to inhibition of hepatic enzymes or transporters (Zamek-Gliszczynski et al., 2013). These observations based on extracellular concentrations are in line with previous studies using similar approaches (Dawson et al., 2012; Morgan et al., 2013; Shah et al., 2015). However, several differences from previous work are important to highlight. First, following the “free drug hypothesis,” we used only unbound drug concentrations rather than total drug concentrations. Indeed, we obtained poorer predictions of DIC using total drug concentrations in plasma or blood (data not shown). Second, we evaluated the association of BSEP inhibition with DIC only and not with other types of liver toxicity. Hepatocellular DILI cases, which are included in other studies, are rather caused by direct toxicity or immune-mediated reactions (Chen et al., 2015) and are likely not explained by BSEP inhibition. Third, we classified the investigated drugs according to the DIC incidence instead of a commonly used DILI severity grading (Chen et al., 2011; Pedersen et al., 2013; Aleo et al., 2014). Fourth, the present assessment represents a worst-case scenario using the lowest reported in vitro BSEP IC50 (variability in IC50 values was within a 3-fold range for the majority of drugs with the exception of cyclosporine A, erythromycin, glibenclamide, and rosiglitazone) and the maximum reported systemic drug concentration at steady state after administration of the highest recommended oral dose. At least for certain drugs (e.g., \( C_{\text{sys,u}} \) of atorvastatin and rosiglitazone), our parameters significantly deviate from previous studies (Dawson et al., 2012; Morgan et al., 2013; Shah et al., 2015).

However, relating extracellular drug concentrations to inhibition of an intracellular liver target (BSEP) is not expected to provide meaningful risk estimations if intracellular drug concentrations are affected by active transport or metabolic processes (Dawson et al., 2012; Chu et al., 2013; Camenisch et al., 2015; Camenisch, 2016). Indeed, applying the in vitro \( K_{\text{vaso}} \) values to obtain unbound intrahepatic drug concentrations markedly improved the separation of cholestasis classes. This became particularly evident for the correlation with unbound intrahepatic concentrations based on hepatic inlet concentrations, where almost complete separation between the different cholestasis classes was obtained (Fig. 5D). The use of hepatic inlet concentrations is most important for drugs with high hepatic first-pass elimination and significantly reduced systemic concentrations, as observed for simvastatin (115-fold difference between \( C_{\text{sys,u}} \) and \( C_{\text{inlet}} \)). We therefore conclude that the unbound intrahepatic drug concentration based on hepatic inlet concentrations clearly represents the most relevant reference concentration for prediction of the DIC risk using BSEP inhibition assays.

BSEP in vitro inhibition data are commonly generated in early drug development. However, at this stage, clinical drug exposure data are rarely available, and DIC risk assessments based on the presented approach are not possible. We therefore performed an alternative risk assessment assuming that the clinical systemic exposure can be accurately predicted and assuming complete and rapid absorption to obtain worst-case hepatic inlet concentrations (Fig. 5E). The use of hepatic inlet concentrations is most important for drugs with high hepatic first-pass elimination and significantly reduced systemic concentrations, as observed for simvastatin (115-fold difference between \( C_{\text{sys,u}} \) and \( C_{\text{inlet}} \)). While the cholestasis classes “common” and “rare” were reasonably well separated by this approach, the separation between classes “no cholestasis” and “rare” failed compared with risk approaches using measured clinical input parameters (Fig. 5D vs. Fig. 5E). Therefore, for DIC risk assessments during preclinical development, we suggest applying unbound intrahepatic drug concentrations derived from in vitro \( K_{\text{vaso}} \) and predicted systemic exposure (e.g., using physiologically based pharmacokinetic modeling). \( K_{\text{vaso}} \) and corresponding unbound intrahepatic drug concentrations are affected by the individual contributions of active hepatic transport and
metabolic processes and correlate well with the four ECM classes (Figs. 2 and 3). For drugs in ECM classes 1 and 3, where hepatic uptake is the rate-limiting elimination step, $K_{puu}$ is likely to be below 1 ($C_{hep,puu} < C_u$). On the other hand, class 3 drugs can also approach $K_{puu}$ above 1 if active hepatic uptake is extensive ($C_{hep,puu} > C_u$). As illustrated in Fig. 7, unbound extracellular concentrations of ketoconazole and simvastatin acid markedly overestimated the DIC risk. Use of $K_{puu}$-corrected unbound intrahepatic concentrations shifted ketoconazole ($K_{puu} = 0.32$) and simvastatin acid ($K_{puu} = 0.39$) into their appropriate risk zones (“rare” and “no” cholestasis, respectively). For class 4 drugs, passive uptake/efflux permeability exceeds intrinsic hepatic clearance. In combination with active hepatic uptake processes, drugs accumulate within the hepatocytes, resulting in $K_{puu}$ values greater 1 (Figs. 2 and 3). For these drugs, the DIC risk is underestimated by unbound extracellular concentrations, as highlighted for pitavastatin in Fig. 7. After correction with $K_{puu}$, pitavastatin was assigned to the correct risk zone (“rare”). Only for class 2 drugs, such as imatinib, do unbound extracellular concentrations represent an appropriate surrogate for the unbound intrahepatic concentration ($K_{puu} \approx 1.0$, $C_{hep,puu} \approx C_u$) (Fig. 7).

For the in vitro $K_{puu}$ assessment, we generally assumed absence of active sinusoidal efflux. $K_{puu}$ values of substrates for basolateral MRP3 and MRP4, which have been shown to be upregulated in human and rat under cholestatic conditions (Soroka et al., 2001; Gradhand et al., 2008), might therefore be overpredicted. However, except for rosuvastatin, the relevance of MRP3 and MRP4 in transport of pharmaceutical drugs is unknown and requires further research. In addition, we assumed that the ECM-based in vitro $K_{puu}$ directly translates to in vivo $K_{puu}$. The assumption was based on the good IVIVC for $K_{puu}$ in rat (Fig. 4) and on previous hepatic clearance predictions using the ECM, where no systematic underprediction of in vivo hepatic clearance was observed. Similarly, in vitro $K_{puu}$ using sandwich-cultured hepatocytes recently provided a close IVIVC in rats for rosuvastatin, ritonavir, and furamidine (Pfeifer et al., 2013), whereas $K_{puu}$ from suspended hepatocytes generally overpredicted $K_{puu}$ in vivo, likely due to the absence of intrinsic clearance processes. Partial loss of activity in certain in vitro systems has previously been described (Lundquist et al., 2014); however, the need of scaling factors for pharmacokinetic modeling is controversially discussed and likely compound-dependent, requiring clinical data (Jones et al., 2012; Morse et al., 2015; Yoshikado et al., 2016). Especially in an early drug development stage, the direct use of in vitro $K_{puu}$ is therefore expected to enable estimations of unbound intrahepatic drug concentrations.

Our risk assessment using unbound hepatic inlet concentrations predicted a DIC risk in more than 2% of subjects for safety margins below ~25 (Fig. 5D). Since unbound intrahepatic concentrations are 25-fold below the IC50 of BSEP, no relevant inhibition of BSEP would be expected. However, the occurrence of DIC in a low percentage of patients leads us to the hypothesis that these subjects react more sensitively to BSEP inhibition than the rest of the population. This variability might be explained by various physiologic (e.g., age, gender, underlying diseases), exogenous (e.g., comedication, nutrition), and genetic factors (polymorphisms) that potentially modify intrahepatic drug concentrations or BSEP activity, resulting in increased cholestasis risk. Using bosentan as an example, we evaluated the theoretical impact of disease state and polymorphic hepatic enzymes and transporters on DIC risk (Fig. 6). Physiologic factors, such as increased age and gender, are not associated with altered risk of bosentan-induced cholestasis (Markova et al., 2013). Similarly, increased systemic bosentan exposure in PAH patients could not be linked to higher incidence of liver injury (Dingemanse and van Giersbergen, 2004), which is in line with our assessment (Fig. 6). The present analysis suggests that genetic variants of transporters and enzymes involved in bosentan elimination only marginally affect the DIC risk assessment, even upon the unlikely concurrence of all polymorphisms (Fig. 6). Indeed, bosentan-induced liver injury could not be associated with polymorphic variants of OATP1B1, OATP1B3, CYP2C9, or MRP2 (Markova et al., 2013, 2014; Roustit et al., 2014). In addition, we evaluated the impact of the BSEP variant G885R, which was recently associated with DIC, likely due to substantially reduced activity (<20%) (Lang et al., 2007). Based on these data, we estimated a significantly increased risk of bosentan-induced cholestasis in PAH patients carrying the G885R variant, as indicated by a 23-fold safety margin and the change in cholestasis class from “rare” to “common” (Fig. 6). In summary, the presented risk assessment for bosentan illustrates the utility of ECM-based $K_{puu}$ assessments to define the relevance of polymorphic enzymes and transporters in the hepatic elimination of a drug. Especially for drugs with high risk of DIC, such information could guide the selection of genotyping targets in clinics and ultimately allow personalized dosing regimens. However, further research on frequency, global distribution, and in vivo effects of polymorphisms will be required to estimate the incidence of DIC in heterogenic populations.

In conclusion, we demonstrated that the incidence of DIC upon BSEP inhibition correlates with $K_{puu}$-based unbound intrahepatic drug concentrations. To the best of our knowledge, this approach represents the most reliable prediction of DIC available so far, which also allows to account for polymorphisms on hepatic enzymes and transporters associated with DIC risk. Our study represents a proof-of-concept for estimating the inhibition potential of an intracellular transporter and is therefore expected to likewise improve risk assessments for other intrahepatic targets involved in DDI, pharmacologic efficacy, and toxicology, such as hyperbilirubinemia upon MRP2 or UGT1A1 inhibition. The validation of ECM-based risk assessments for other target enzymes or transporters as well as the extension of the approach to other organs, such as the kidney, will require extensive future research.
Acknowledgments

The authors thank the many Novartis Drug Metabolism and Pharmacokinetics scientists of Basel, Switzerland, who supported this work. Special thank goes to Marc Witschi, Judith Streckfuss, and Hans-Joachim Handschin for technical assistance; to Kenichi Umehara and Ewa Gatlak for scientific advice; and to David Pearson for critical evaluation of this manuscript.

Authorship Contributions

Participated in research design: Riede, Poller, Camenisch.

Conducted experiments: Riede.

Performed data analysis: Riede, Poller, Camenisch.

Wrote or contributed to the writing of the manuscript: Riede, Poller, Huwyler, Camenisch.

References


