In Vitro Interactions of Epacadostat and its Major Metabolites with Human Efflux and Uptake Transporters: Implications for Pharmacokinetics and Drug Interactions

Qiang Zhang, Yan Zhang, Jason Boer, Jack G. Shi, Peidi Hu, Sharon Diamond, and Swamy Yeleswaram

Incyte Corporation, Wilmington, Delaware

Received December 11, 2016; accepted March 3, 2017

ABSTRACT

Epacadostat (EPAC) is a first-in-class, orally active inhibitor of the enzyme indoleamine 2,3-dioxygenase 1 and has demonstrated promising clinical activity. In humans, three major plasma metabolites have been identified: M9 (a glucuronide-conjugate), M11 (a gut microbiota metabolite), and M12 (a secondary metabolite formed from M11). It is proposed, based on the human pharmacokinetics of EPAC, that the biliary excretion of M9, the most abundant metabolite, leads to the enterohepatic circulation of EPAC. Using various in vitro systems, we evaluated in the present study the vitro interactions of EPAC and its major metabolites with major drug transporters involved in drug absorption and disposition. EPAC is a substrate for efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), but it is not a substrate for hepatic uptake transporters [organic anion transporting polypeptides OATP1B1 and OATP1B3]. The low permeability of M9 suggests an essential role for transporters in its disposition. M9 is likely excreted from hepatocytes into bile via multidrug resistance–associated protein 2 (MRP2) and BCRP, excreted into blood via MRP3, and transported from blood back into hepatocytes via OATP1B1 and OATP1B3. M11 and M12 are not substrates for P-gp, OATP1B1 or OATP1B3, and M11, but not M12, is a substrate for BCRP. With respect to inhibition of drug transporters, the potential of EPAC, M9, M11, and M12 to cause clinical drug-drug interactions via inhibition of P-gp, BCRP, OATP1B1, OATP1B3, OAT1, OAT3, or organic cation transporter 2 was estimated to be low. The current investigation underlines the importance of metabolite-transporter interactions in the disposition of clinically relevant metabolites, which may have implications for the pharmacokinetics and drug interactions of parent drugs.

Introduction

Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that is upregulated in some tumor types and exerts immunosuppressive function by enhancing generation and activation of regulatory T cell and allowing tumors to escape immune surveillance. Epacadostat (EPAC) is an investigational drug that is a first-in-class, orally bioavailable small-molecule IDO1 inhibitor with high potency and selectivity. In clinical trials, patients with melanoma have been treated with EPAC in combination with ipilimumab, a cytotoxic T-lymphocyte associated protein 4 inhibitor. EPAC is currently in several clinical trials in combination with immune checkpoint inhibitors, programmed cell death-1, and programmed cell death ligand-1, in a variety of cancers.

Preclinical research has shown that the liver is the primary organ for the clearance of EPAC and its major metabolites, with minimal renal clearance (unpublished results). Boer et al. (2016) have identified three major, IDO1-inactive, circulating EPAC metabolites in human plasma:

1Current affiliation: Ultragenyx Pharmaceutical Company, Novato, California.

M9, a direct O-glucuronide of EPAC formed by UGT1A9; M11, an amidine formed via gut microbiota from EPAC; and M12, an N-dealkylated metabolite of M11 formed via cytochrome 450 (P450) enzymes (Fig. 1). In humans, M11 and M12 were detected at levels that were 30% and 80% of EPAC at steady state, respectively. In contrast, formation of M9, the EPAC glucuronide, is the dominant elimination pathway with an 8.0-fold greater area under the curve (AUC)0–12h than that of EPAC at steady state (Boer et al., 2016). Enterohepatic circulation (EHC), a dispositional process of many drugs that undergo glucuronidation, occurs by biliary excretion of the glucuronide conjugate and intestinal reabsorption of parent drug, often with hepatic conjugation and intestinal deconjugation (Dobrinsky, 1989). Because M9 is the most abundant plasma metabolite of EPAC and double-peaks of EPAC were observed in the plasma concentration-time profiles of some human subjects (Fig. 2), involvement of EHC in the disposition of EPAC is likely. Furthermore, our previous study (Boer et al., 2016) revealed that when M9 was incubated with human feces homogenate, M9 was almost completely consumed in 24 hours, with EPAC and M11 the two major products observed, suggesting the deglucuronidation of M9 to form EPAC via gut microbiota. This finding supports the likely involvement of M9 in the EHC of EPAC.

ABBREVIATIONS: BCRP, breast cancer resistance protein; CHO, Chinese hamster ovary; CSA, cyclosporin A; DDI, drug-drug interaction; DMEM, Dulbecco’s modified Eagle’s medium; EHC, enterohepatic circulation; EPAC, epacadostat; ER, efflux ratio; FBS, fetal bovine serum; FDA, US Food and Drug Administration; HBSS, Hank’s balanced salt solution; IDO1, indoleamine 2,3-dioxygenase 1; KO, knockout; LC-MS/MS, liquid chromatography-tandem mass spectrometry; MDCKII, Madin-Darby canine kidney type II; MRP, multidrug resistance–associated protein; OAT, organic anion transporter; OCT2, organic cation transporter 2; P-gp, P-glycoprotein.
It has been increasingly recognized by both regulatory agencies and the pharmaceutical industry that drug transporters play important roles in absorption and disposition of a drug and, therefore, clinical drug-drug interactions (DDIs) (Giacomini et al., 2010). Numerous research articles investigating new chemical entity-transporter interactions have been published since the US Food and Drug Administration (FDA) and the European Medicines Agency released the draft guidance on evaluation of drug interactions of investigational drugs (FDA, 2012; EMA, 2012) in 2012. However publications investigating metabolite-transporter interactions are still in their infancy. Although metabolites are less likely to cause DDIs via inhibition of cytochrome P450 enzymes owing to increased polarity and metabolic stability, reduced passive membrane permeability of metabolites makes them more susceptible to interactions with drug transporters (Zamek-Gliszczynski et al., 2014). In the present study, to gain a more complete understanding of the underlying mechanisms of the disposition and pharmacokinetics of EPAC, we adopted a comprehensive strategy to determine the in vitro interactions of both EPAC and its metabolites with the major drug transporters [P- pg, BCRP, OATP1B1, OATP1B3, OAT1, OAT3, and organic cation transporter 2 (OCT2)] and evaluate their potential as a perpetrator to cause transporter-mediated clinical DDIs using a range of in vitro models. It has been demonstrated that multidrug resistance–associated protein (MRP)2 and MRP3 are critical efflux transporters in the disposition of many glucuronide conjugates in hepatocytes via biliary excretion and basolateral efflux of these conjugates, respectively (Zamek-Gliszczynski et al., 2006; de Waart et al., 2009; Köck and Brouwer, 2012; Zhang et al., 2016). Consequently, the EPAC glucuronide M9, as the most abundant metabolite in human plasma, was further studied as a substrate for MRP2 and MRP3 to better understand the mechanisms of disposition of M9 in the liver and its implication for the pharmacokinetics of EPAC.

Materials and Methods

Materials. EPAC (free base) was synthesized by Adesis Inc. (New Castle, DE). M9 (INCB056867, free base) and M11 (INCB056868, free base) were generated by Hypha Discovery Ltd (Uxbridge, UK). M12 (INCB052101, free base) was synthesized by Incyte Corporation (Wilmington, DE). Dulbecco’s modified Eagle’s medium (DMEM) and DMEM combined with Ham’s F-12 medium (DMEM-F12) were purchased from Lonza (Basel, Switzerland). Fetal bovine serum (FBS), nonessential amino acids, penicillin, streptomycin, and sodium butyrate, and Hanks balanced salt solution (HBSS) were purchased from Mediatech (Manassas, VA). Estrone 3-sulfate, cerivastatin, cyclosporin A (CSA), benz bromarone, probenecid, mefloquin, verapamil, nadolol, metoprolol, prazosin, Ko143, quinidine, digoxin, sodium butyrate, and Hanks’ balanced salt solution (HBSS) were purchased from Sigma-Aldrich (St. Louis, MO). Pitavastatin calcium was purchased from Selleck Chemicals (Houston, TX). [3H]estrone 3-sulfate, [3H]estradiol 17-ß-glucuronide, [3H]N-acetylsalicylic acid, and MicroScint-40 scintillation cocktail were purchased from PerkinElmer (Waltham, MA). [14C]metformin was purchased from Moravek (Brea, CA). BCA protein assay kit was purchased from Pierce Biotechnology (Rockford, IL). All other chemicals were of analytical grade and commercially available. The 24-well transwell plates with polyethylene terephthalate membrane filters, BioCoat collagen-coated 96-well plates, and BioCoat poly-l-lysine-coated 96-well plates were purchased from BD Bioscience (Bedford, MA).

Pharmacokinetic Evaluation of EPAC in Healthy Human Volunteers. A clinical phase 1 study was conducted in healthy adult volunteers to evaluate the potential DDI between EPAC and warfarin, and the details of the study were described in a previous publication (Shi et al., 2016). Briefly, the study comprised one fixed sequence and two periods, enrolling 18 healthy adult volunteers. The subjects received a single dose of 25 mg warfarin [warfarin (Coumadin) tablets] on day 1 of period 1 (days 1-7) and again on day 14 of period 2 (days 8-20). The subjects also received 300 mg of EPAC twice daily during days 8-20. Blood samples for determination of plasma concentrations of EPAC and metabolites were collected at the following predetermined time points at predose and 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 12 hours after administration of EPAC in the mornings on days 13 and 14. The pharmacokinetic profiles of EPAC at steady state were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Cell and Culture Conditions. Caco-2 cells were obtained from American Type Culture Collection (Rockville, MD). Madin-Darby canine kidney type II (MDCKII) cells, MDCKII cells stably transfected with human BCRP (MDCKII-BCRP), Chinese hamster ovary (CHO) cells, and CHO cells stably transfected with human OAT1 (CHO-hOAT1), OAT3 (CHO-hOAT3), and OCT2 (CHO-hOCT2), human embryonic kidney 293 cells containing Flp-In system (Flp-In-293) (Invitrogen) stably transfected with human OAT3 (Flp-In-293-hOAT3) were purchased from Moravek (Brea, CA). Bovine serum (FBS), nonessential amino acids, penicillin, streptomycin, and sodium butyrate, and Hanks’ balanced salt solution (HBSS) were purchased from Sigma-Aldrich (St. Louis, MO). Pitavastatin calcium was purchased from Selleck Chemicals (Houston, TX). [3H]estrone 3-sulfate, [3H]estradiol 17-ß-glucuronide, [3H]N-acetylsalicylic acid, and MicroScint-40 scintillation cocktail were purchased from PerkinElmer (Waltham, MA). [14C]metformin was purchased from Moravek (Brea, CA). BCA protein assay kit was purchased from Pierce Biotechnology (Rockford, IL). All other chemicals were of analytical grade and commercially available. The 24-well transwell plates with polyethylene terephthalate membrane filters, BioCoat collagen-coated 96-well plates, and BioCoat poly-l-lysine-coated 96-well plates were purchased from BD Bioscience (Bedford, MA).
obtained from Solvo Biotechnology (Budaörs, Hungary) under a license and service agreement.

All MG0 were grown at 37°C in an atmosphere of 5% CO2.Both Caco-2 and MDCKII cells in DMEM growth medium supplemented with 10% (v/v) FBS, 1% (v/v) nonessential amino acid, penicillin (100 U/ml), and streptomycin (100 μg/ml). For MDCKII cells, 2 mM L-glutamine was also added in the DMEM medium. Confluent cell monolayers were subcultured every 7 days or 4 days for Caco-2 and MDCKII cells, respectively, by treatment with 0.25% trypsin containing 1 μM EDTA. Both Caco-2 and MDCKII cells were seeded in 24-well transwell plates. For bidirectional transport assays, Caco-2 cells and MDCKII cells were seeded at the density of 4000 and 40,000 cells/well, respectively. Cell monolayers were used for transport assays between 22 and 25 days for Caco-2 cells and 4 days for MDCKII cells postseeding. Both Flp-In-293 and CHO cells were grown in DMEM-F12 growth medium supplemented with 10% (v/v) FBS, L-glutamine (2 mM), penicillin (100 U/ml), and streptomycin (100 μg/ml). For CHO cells, L-proline (50 μg/ml) was also added in the medium. Confluent cell monolayers were subcultured every 2 or 3 days by treatment with 0.05% trypsin containing 1 μM EDTA. For uptake assays, CHO and Flp-In-293 cells were seeded at a density of 4000–40,000 cells/well in 96-well microplates coated with collagen I (CHO cells) or poly-l-lysine (Flp-In-293 cells). Uptake experiments were carried out 24 to 48 hours postseeding when cells were at least 90% confluent. For OATP1B1-, OATP1B3-, and OAT3-transfected cells, the cells were treated with 5 mM sodium butyrate for 24 hours before the experiment to increase the expression of transfected transporters (Gui et al., 2008).

Summary of In Vitro Models Used. For clarification of the choices of each in vitro model used to characterize the interactions of EPAC and its major metabolites with the drug transporters tested in this study, a summary table outlining the in vitro models, transporters, assay types, tested compounds, and primary purposes of using the individual models has been provided (Table 1).

TABLE 1

Summary of in vitro models used in the present study

<table>
<thead>
<tr>
<th>In Vitro Model</th>
<th>Transporter</th>
<th>Assay</th>
<th>Compound</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental Caco-2 monolayers</td>
<td>P-gp</td>
<td>Transcellular transport</td>
<td>EPAC, M9, M11, M12</td>
<td>Substrate and inhibition</td>
</tr>
<tr>
<td>Knock-out Caco-2 monolayers</td>
<td>P-gp</td>
<td>Transcellular transport</td>
<td>EPAC</td>
<td>Substrate</td>
</tr>
<tr>
<td>Transfectant MDCKII monolayers</td>
<td>BCRP</td>
<td>Transcellular transport</td>
<td>EPAC, M9, M11, M12</td>
<td>Substrate and inhibition</td>
</tr>
<tr>
<td>CHO cells</td>
<td>OATP1B1, OATP1B3</td>
<td>Uptake</td>
<td>EPAC, M9, M11, M12</td>
<td>Substrate and inhibition</td>
</tr>
<tr>
<td>CHO cells</td>
<td>OAT2</td>
<td>Uptake</td>
<td>EPAC, M9, M11, M12</td>
<td>Inhibition</td>
</tr>
<tr>
<td>CHO cells</td>
<td>OAT3</td>
<td>Uptake</td>
<td>EPAC, M9, M11, M12</td>
<td>Inhibition</td>
</tr>
<tr>
<td>Human embryonic kidney cells</td>
<td>MRP2, MRP3, BCRP</td>
<td>Uptake</td>
<td>M9</td>
<td>Substrate</td>
</tr>
</tbody>
</table>

Vesicular Uptake Studies using Membrane Vesicles Containing Human Efflux Transporters. The substrate studies of M9 for efflux transporters MRP2, MRP3, and BCRP were performed at BioReliance Corporation under a service contract using inside-out membrane vesicles generated from the mammalian cells stably expressing human BCRP, MRP2, or MRP3. Briefly, membrane suspensions were added to assay media on ice and dispensed into a 96-well plate (25 μg total membrane protein per well). After a preincubation at 37°C for 5 minutes, M9 (1–100 μM) was incubated for 8 minutes at 37°C along with either 4 mM ATP or AMP (as a negative control) in the presence or absence of positive control inhibitor of MRP2 (400 μM benzobromarone), MRP3 (1 mM sulfasalazine), or BCRP (1 μM Ko143). Positive control substrate of MRP2 [50 μM estradiol 17β-glucuronide (E(17βG)), MRP3 (50 μM E(17βG)), or BCRP (1 μM estrone 3-sulfate)], and negative membrane control assays were carried out in the same plate. The reactions were stopped by adding ice-cold washing buffer. The reaction mixture was then transferred to a filter plate, and the liquid was removed under vacuum using a cell harvester. The filters were dried and subsequently analyzed by LC-MS/MS. Results were calculated as ATP-dependent transport and were expressed as pmol/min per milligram of protein. A rate of uptake for test compound ≥1.5- to 2-fold (relative to the AMP control) or 2-fold with inhibitor was considered a positive result.

Determination of EPAC and its Metabolites as Substrates of Human Hepatic Uptake Transporters. The potential for EPAC and its major metabolites to be a substrate of human hepatic uptake transporters OATP1B1 and OATP1B3 were determined using CHO cells stably transfected with OATP1B1 or OATP1B3. Pitavastatin was included as positive control substrate in the uptake experiments for both OATP1B1 and OATP1B3. These assays were conducted at 37°C using a 24-well format. After cell culture medium was removed, cells were washed once with prewarmed Kreb-Henseleit (KH) buffer (142 mM NaCl, 23.8 mM NaHCO3, 4.83 mM KCl, 0.96 mM KH2PO4, 12.5 mM HEPES, 1.53 mM CaCl2, and 1.2 mM MgSO4, pH 7.4). Pitavastatin was initiated by adding 250 μl of KH buffer containing either the test compound (5 or 10 μM) or pitavastatin (0.5 μM). Cells were then incubated at 37°C for 1, 3, or 5 minutes (time-dependence studies). After incubation, the uptake solution was rapidly aspirated and the cells were rinsed twice with 500 μl of ice-cold phosphate buffered saline to stop the uptake process. EPAC, M9, M11, M12, or pitavastatin that was accumulated in the cells was extracted by adding 250 μl of lysis solution [70:30 methanol/water (v/v)] to each well. After shaking the plate for 30 minutes,

TABLE 2

Physicochemical properties and permeability of EPAC, M9, M11, and M12

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mol. Wt.</th>
<th>LogP</th>
<th>PSA</th>
<th>Caco-2 Permeability (g/s/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPAC</td>
<td>438.2</td>
<td>2.17</td>
<td>168</td>
<td>4.0</td>
</tr>
<tr>
<td>M9</td>
<td>614.4</td>
<td>-2.1</td>
<td>264</td>
<td><0.1</td>
</tr>
<tr>
<td>M11</td>
<td>422.2</td>
<td>0.61</td>
<td>159</td>
<td>3.2</td>
</tr>
<tr>
<td>M12</td>
<td>300.1</td>
<td>1.9</td>
<td>101</td>
<td>9.3</td>
</tr>
</tbody>
</table>

PSA, polar surface area.

*Calculated by ADMET Predictor software (Simulations Plus, Lancaster, CA).
the cells were scraped briefly to maximize recovery of the samples. Cell lysate was centrifuged for 10 minutes at 13,000 rpm at 4°C. The supernatant was transferred to a 96-well plate for analysis using LC-MS. Protein amount was quantified using BCA protein assay kit (Pierce Biotechnology), and the plate for protein quantification was read on an Enspire Multilabel Reader (PerkinElmer).

Determination of EPAC and its Metabolites as Inhibitors of Human Uptake Transporters. The potential for EPAC and its major metabolites to inhibit the transport of probe substrates for human uptake transporters OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 were determined using CHO or Flp-In-293 cells stably transfected with each correspondent transporter. EPAC, M9, M11, or M12 was dissolved in DMSO with final concentrations between 0.13 and 300 μM. Positive control inhibitors were 100 μM cerivastatin (OATP1B1), 10 μM cyclosporin A (OATP1B3), 200 μM benz bromarone (OAT1), 100 μM probenecid (OAT3), and 100 μM verapamil (OCT2). These assays were conducted at 37°C using a 96-well format with substrates at the concentrations well below their respective Km values. The probe substrates used in these studies included [3H]estrone 3-sulfate (0.1 μM), [3H]estradiol 17-β-glucuronide (0.2 μM), [3H]aminoglutethimide (1 μM), [3H]estrone 3-sulfate (0.24 μM), or [14C]metformin (10 μM) for OATP1B1, OATP1B3, OAT1, OAT3, and OCT2, respectively. After cell culture medium was removed, cells were washed once with prewarmed KH buffer. Uptake was initiated by adding 50 μl of KH buffer containing the probe substrate, EPAC, M9, M11, or M12 either in the presence or absence of a positive control inhibitor for each correspondent transporter. Cells were then incubated at 37°C for designated time. After the incubation, the uptake solution was rapidly aspirated, and the cells were rinsed twice with 100 μl of ice-cold phosphate-buffered saline to stop the uptake process. Cells were solubilized by adding 50 μl of 0.2 N NaOH and incubating for 15 minutes at 37°C. Cell lysate was transferred to a white solid-bottom 96-well plate, and then 150 μl of MicroScint-40 scintillation cocktail was added to each well. After 3 hours’ incubation in the dark at room temperature, radioactivity was determined by using a MicroBeta Microplate Scintillation Counter (PerkinElmer).

LC-MS/MS Analysis. Samples containing EPAC, M11, M12, digoxin, nadolol, metoprolol, prazosin, or pitavastatin from transcellular transport, and uptake experiments were analyzed by using a Shimadzu LCMS-2020 (Shimadzu Scientific Instruments, Columbia, MD) with a Zorbax SB-C18 column (2.1 × 50 mm, 3.5 μm; Phenomenex Inc., Torrance, CA). The chromatographic separation was achieved using a gradient elution consisting of mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in acetonitrile).
at a flow rate of 500 μl/min. M9 samples were analyzed by turbo ion spray LC-MS/MS under gradient conditions. Chromatography was performed with an ACE 3 C8 high-performance liquid chromatography column (2.1 × 50 mm, 3 μm; Advanced Chromatography Technologies, Aberdeen, Scotland) at ambient temperature with a gradient composed of mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in acetonitrile) at a flow rate of 300 μl/min. Peak areas were detected on a Sciex API-4000 (AB Sciex LLC, Foster City, CA) operating in positive ionization mode with MRM transitions: m/z 614.2 → 438.0. Chromatographic peaks were integrated and quantitative analysis was performed using Analyst software (version 1.4.1; Duluth, GA).

Data Analysis. Apparent permeability coefficient (P_{app}) values from transcellular transport studies were determined using eq. 1:

\[
P_{app}(\text{cm/sec}) = \frac{(F*VD)}{(SA*MD)}
\]

where the flux rate (F, mass/time) is calculated from the slope of cumulative amounts of compound of interest on the receiver side, SA is the surface area of the cell membrane, VD is the donor volume, and MD is the initial amount of the solution in the donor chamber. The efflux ratio (ER) from Caco-2 and MDCKII studies was calculated as the ratio of the P_{app} measured in the B-A direction divided by the P_{app} in the A-B direction. BCRP-mediated net efflux was determined by dividing the ER obtained from MDCKII-BCRP cells by the ER from MDCKII-control cells.

The IC_{50} values for inhibition of digoxin and prazosin transport by the test compound from Caco-2 and MDCKII studies were determined by fitting the curve onto the net efflux ratio versus concentrations of test compound using a dose-response method from Prism 6.02 (2007, GraphPad, San Diego, CA). The IC_{50} value for uptake transporters was defined as the concentration of inhibitor needed to inhibit transport of the probe substrate by 50% and was determined using Prism 6.02. The degree of inhibition of OATP1B1 or OATP1B3 in humans was estimated by a static model (eq. 2 and eq. 3) using the R value (Hirano et al., 2006; Giacomini et al., 2010), which represents the ratio of the uptake clearance in the absence of inhibitor to that in the presence of inhibitor:

\[
R = 1 + \left(\frac{I_{in,max}}{IC_{50}}\right)
\]

\[
I_{in,max} = C_{max} + \left(\frac{Dose \times F_a \times F_g \times Q_h}{IC_{50}}\right)
\]

where \(I_{in,max}\) is the estimated maximum inhibitor concentration at the inlet to the liver, \(C_{max}\) is the maximum systemic plasma concentration of inhibitor, \(dose\) is the inhibitor dose, \(F_a \times F_g\) is the fraction of the dose of inhibitor that is absorbed, \(k_a\) is the absorption rate constant of the inhibitor, and \(Q_h\) is the hepatic blood flow rate in humans (1500 ml/min). Statistical analysis was conducted using a Student t test for comparing two treatments. \(P < 0.05\) was considered significant.

Results

Physicochemical Properties of EPAC and Its Metabolites. The absorption, distribution, metabolism, and excretion (ADME) of drugs and metabolites are profoundly influenced by their physicochemical properties, such as molecular size, lipophilicity, polarity, and membrane permeability. The molecular weight, LogP, polar surface area, and apparent permeability values for EPAC, M9, M11, and M12 are summarized in Table 2. Whereas the Caco-2 permeability values were moderate for EPAC, M11, and M12 ranging from 3.2 to 9.3 × 10^{-6}
cm/s, the value of M9 was very low (<0.1 \times 10^{-6} \text{ cm/s}) (Table 2). This result was expected because M9 as a direct glucuronide conjugate is more hydrophilic and polar with a low LogP value (−2.1) and a high polar surface area value (264).

Pharmacokinetic Profiles of EPAC in Human Subjects Suggesting EHC. After multiple twice-daily oral dosing of 300 mg EPAC, the steady-state plasma concentration-time profiles of EPAC in five subjects (5 of 17 subjects; 29%) exhibited distinct secondary peaks at approximately 4 hours postdose (Fig. 2), suggesting EHC of EPAC.

Evaluation of EPAC and Its Metabolites as P-gp and BCRP Substrates. Evaluation of EPAC and its metabolites as substrates of P-gp and BCRP was conducted in Caco-2 cell and BCRP-transfected MDCKII cell monolayers, respectively. Bidirectional transport experiments in Caco-2 cells indicated that the B-A/A-B efflux ratio of digoxin...
Fig. 6. Uptake of EPAC and M9 into human OATP1B1- and OATP1B3-transfected CHO cells in the absence or presence of cerivastatin (an inhibitor of OATP1B1 and OATP1B3). The uptake of EPAC (5 μM), M9 (10 μM), and control substrate pitavastatin (0.5 μM) were conducted in the transporter-transfected and control CHO cells in the absence or presence of an inhibitor [cerivastatin (CRS)]. The incubation time with EPAC, M9, or pitavastatin was 1, 5, and 1 minutes, respectively. White bar represents the uptake rate in the presence of vehicle (DMSO). Black bar represents the uptake rate in the presence of 100 μM cerivastatin. Results are shown as the mean ± S.D. (n = 3). Significance was determined by a Student t test when an inhibitor treatment was compared with DMSO control *P < 0.05; **P < 0.01; ***P < 0.001.
was 25. This ratio decreased to unity with the addition of the P-gp inhibitor CSA, indicating that P-gp expressed in the Caco-2 cells were functionally active. In the presence of CSA, the ER of EPAC was partially reduced (<50%) (Fig. 3A), suggesting that P-gp contributes to the efflux of EPAC and that other transporters may also play a role in the efflux of EPAC in Caco-2 cell monolayers. The ER of M9 was 2.5 and 1.9 at 1 or 20 μM, respectively, suggesting that the efflux of M9 in Caco-2 cells is minimal, and it is unlikely a P-gp substrate (Fig. 3B). The ER values of M11 and M12 at each concentration were below 2 (Fig. 3C, D and D), indicating that neither M11 nor M12 is a substrate of P-gp.

The ratio of ER of EPAC in BCRP-MDCKII cells to that in control-MDCKII cells (ER_{BCRP}/ER_{control}) was 35 and 27 at 3 and 300 μM, respectively, indicating that EPAC is a substrate of BCRP and the efflux mediated by BCRP was not saturated at 300 μM (Fig. 3G). The ER_{BCRP}/ER_{control} values of M12 (1–300 μM) were around unity, indicating that M12 is not a substrate of BCRP (Fig. 3H). Because the permeability of M9 is very low and the bidirectional transport assay may underestimate the efflux ratios of low-permeability compounds (Brouwer et al., 2013), a vesicular uptake assay using membrane vesicles containing BCRP was carried out to determine whether M9 is a substrate of BCRP. The uptake rates of M9 into BCRP-expressing membrane vesicles in the presence of ATP, AMP, or a combination of ATP and Ko143 were 115, 60.2, and 53.5 pmol/min per milligram of protein, respectively (Fig. 3F). This result implies that M9 is a substrate of BCRP.

To further evaluate the relative contribution of P-gp and BCRP in the efflux of EPAC in Caco-2 cells, we conducted an additional study in MDR1/MDR2 double-KO and BCRP/MDR2 double-KO Caco-2 cell lines. It has been demonstrated that these KO cell lines, derived from Caco-2 cells (C2BBe1 clone), are similar to the wild type Caco-2 cells with respect to growth rate, morphology, differentiation, tight junction formation, passive permeability of model compounds, and stability of phenotype (Sampson et al., 2015). Two control substrates, digoxin (P-gp substrate) and estrone sulfate (BCRP substrate), were used in this study to ensure the validity of these KO models. As expected, verapamil (positive-control inhibitor of P-gp) completely inhibited the efflux of digoxin in parental cells and BCRP/MDR2 KO cells, and Ko143 (positive control inhibitor of BCRP) reduced the efflux of estrone sulfate by 87% in parental cells and 100% in P-gp/MDR2 KO cells. In addition, the ER of digoxin was not reduced by double KO of BCRP and MRP2 (Fig. 4D), and the ER of estrone sulfate was not reduced by double KO of P-gp and MRP2 (Fig. 4B), confirming the function of P-gp and BCRP proteins in these KO cell lines and the specificity of KO of the individual efflux transporters. As shown in Fig. 4, EPAC exhibited much higher efflux in the parental (ER = 24) and the P-gp/MDR2 KO cell lines (ER = 18) than in the BCRP/MDR2 KO cell line (ER = 4.2), indicating that BCRP may play a more important role in the efflux of EPAC in Caco-2 cells than does P-gp. Verapamil partially inhibited efflux of EPAC in the parental cells (ER reduced from 15 to 10, 33% inhibition), and it completely inhibited efflux in BCRP/MDR2 KO cells (ER reduced from 4.2 to 1.4) (Fig. 4C). The efflux of EPAC was inhibited by Ko143 (ER reduced from 24 to 5.5, 77% inhibition) in the parental cells to a greater extent than verapamil and was completely inhibited by Ko143 in the P-gp/MDR2 KO cells (ER reduced from 18 to 1.1) (Fig. 4A). These results suggest that EPAC is a substrate of both P-gp and BCRP, although it appears that BCRP may have more pronounced effect on the efflux of EPAC in Caco-2 cells.

Evaluation of EPAC and Its Metabolites as OATP1B1 and OATP1B3 Substrates. Given the important roles of OATP1B1 and OATP1B3 in the hepatic uptake of drugs and metabolites in humans, in vitro uptake studies were performed to investigate whether EPAC and its metabolites are substrates of these two uptake transporters by using
CHO cells transfected with human OATP1B1 or OATP1B3. The uptake of EPAC into OATP1B1- or OATP1B3-transfected cells was approximately 1.8-fold or 2.2-fold greater than that in control cells, respectively (Fig. 5, A and E), suggesting that EPAC appears to be a poor substrate of both OATP1B1 and OATP1B3. The uptake of M9 into OATP1B1- or OATP1B3-transfected cells was at least 2.2-fold or 3.7-fold greater than those in control cells, respectively (Fig. 5, B and F), suggesting that M9 is likely a substrate of these two transporters. In contrast, because the uptake of M11 and M12 into OATP1B1- or OATP1B3-transfected cells was less than 2-fold (1.2- to 1.7-fold) that in control cells (Fig. 5, C, D, G and H), it is unlikely that M11 and M12 are substrates of OATP1B1 and OATP1B3.

As per the decision tree in the FDA guidance (FDA, 2012), additional experiments were performed using cerivastatin as a positive control inhibitor of OATP1B1 and OATP1B3 to confirm whether EPAC and M9 are substrates of OATP1B1 and OATP1B3. Pitavastatin was used as a positive control substrate in these experiments. The uptake of pitavastatin into OATP1B1- or OATP1B3-transfected cells was significantly reduced by cerivastatin, indicating the effectiveness of the inhibitor treatment (Fig. 6, C, D, G and H). The uptake of EPAC into OATP1B1- or OATP1B3 transfected cells in the presence of cerivastatin was not significantly different from that of the vehicle control, implying that EPAC is not a substrate of OATP1B1 or OATP1B3 (Fig. 6, A and B). In contrast to EPAC, cerivastatin reduced the uptake of M9 into OATP1B1- and OATP1B3-transfected cells by 91% and 81%, respectively (Fig. 6, E and F). These results confirm that M9 is a substrate of both OATP1B1 and OATP1B3.

Evaluation of M9 as a Substrate for MRP2 and MRP3. Because M9 is a glucuronide conjugate of EPAC with low membrane permeability and exhibited high systemic exposure (up to 8-fold of EPAC exposure) in humans, MRP2 and MRP3 are likely involved in the hepatic disposition of this glucuronide metabolite. The interactions of M9 with MRP2 and MRP3 as a substrate were determined using the membrane vesicles harvested from human MRP2- or MRP3-transfected cells. M9 was taken up and accumulated to a greater extent (4.7-fold higher) in the MRP2-containing vesicles compared with the negative control membrane vesicles. The accumulation of M9 in the MRP2-containing vesicles was inhibited by AMP and benz bromarone (positive control inhibitor) by 78% and 89%, respectively (Fig. 7A). The accumulation of M9 in the MRP3-containing vesicles was 24-fold greater than that in the negative control membrane vesicles. Both AMP and sulfasalazine (positive control inhibitor) strongly inhibited the accumulation of M9 in the MRP3-containing vesicles (>90% inhibition) (Fig. 7B). These results clearly indicate that M9 is a substrate for MRP2 and MRP3.

Evaluation of EPAC and Its Metabolites as P-gp and BCRP Inhibitors. To determine whether P-gp is inhibited by EPAC and its metabolites, the ER of digoxin in Caco-2 cells was examined in the absence or the presence of various concentrations of EPAC, M9, M11, or M12. The ER of digoxin decreased in the presence of EPAC in a concentration-dependent manner. At 500 μM EPAC, the ER of digoxin reduced by only 45%, suggesting that the IC₅₀ of EPAC is greater than 500 μM (Table 3). No significant decrease in the ER of digoxin was observed in the presence of M9, M11, or M12 over the concentrations between 0 and 300 μM; therefore, these metabolites are not inhibitors of P-gp (Table 3).

The potential of EPAC and its metabolites to inhibit BCRP was determined in MDCKII-BCRP cell line. Prazosin was used as a prototype substrate of BCRP (Ni et al., 2010), and Ko143 was used as a BCRP inhibitor (Allen et al., 2002). The ER of prazosin in the BCRP control value of prazosin was not reduced in the presence of various concentrations of EPAC or M9 (0–300 μM), which indicates that EPAC and M9 are not inhibitors of BCRP. The BCRP-mediated efflux of prazosin was slightly reduced in the presence of various concentrations of M11 (0–300 μM), and the IC₅₀ value was greater than 300 μM. M12 inhibited the BCRP-mediated efflux of prazosin significantly, with an IC₅₀ of 32 μM (Table 3). Overall, the potential of both EPAC and its metabolites to cause clinical DDIs via inhibition of P-gp or BCRP is low because the ratios of IC₅₀ are below 0.1, and the ratios of IC₅₀ are below 10, based on the FDA’s guidance on DDI evaluation (Table 4).

Evaluation of EPAC and Its Metabolites as Inhibitors of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2. The potential of EPAC and its metabolites to inhibit the human hepatic uptake transporters OATP1B1 and OATP1B3 and the human renal uptake transporters OAT1, OAT3, and OCT2 was determined in individual transporter-expressing CHO or human embryonic kidney 293 cell lines. EPAC was not a potent inhibitor of OCT2, with an IC₅₀ value > 100 μM, but it inhibited the uptake mediated by OAT3, OATP1B3, and OATP1B1, with IC₅₀ values of 21, 51, and 59 μM, respectively. M9 was a weak inhibitor of OAT3 and OATP1B1, with IC₅₀ values approximately 1.8-fold or 2.2-fold greater than that in control cells, respectively (Fig. 5, B and F), suggesting that M9 is a substrate of these two transporters. In contrast, because the uptake of M11 and M12 into OATP1B1- or OATP1B3-transfected cells was less than 2-fold (1.2- to 1.7-fold) that in control cells (Fig. 5, C, D, G and H), it is unlikely that M11 and M12 are substrates of OATP1B1 and OATP1B3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>I₁ (μM)</th>
<th>I₂ (μM)</th>
<th>P-gp</th>
<th>BCRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC₅₀</td>
<td>I₁/IC₅₀</td>
<td>I₂/IC₅₀</td>
<td>IC₅₀</td>
</tr>
<tr>
<td>EPAC</td>
<td>1.57</td>
<td>>500</td>
<td><0.004</td>
<td>5.5</td>
</tr>
<tr>
<td>M9</td>
<td>10.2</td>
<td>Unknown</td>
<td>N/I</td>
<td>N/A</td>
</tr>
<tr>
<td>M11</td>
<td>2.10</td>
<td>Unknown</td>
<td>N/I</td>
<td>N/A</td>
</tr>
<tr>
<td>M12</td>
<td>2.10</td>
<td>Unknown</td>
<td>N/I</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I₁, Mean steady-state total Cmax after 300 mg twice daily dose; I₂, 300 mg (0.685 mmol) dose divided by 250 ml.

Table 4: In vitro evaluation of EPAC and its metabolites as a potential perpetrator for P-gp- or BCRP-mediated DDIs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total Cmax</th>
<th>OATP1B1</th>
<th>OATP1B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IC₅₀</td>
<td>Cmax IC₅₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC₅₀</td>
<td>Cmax IC₅₀</td>
</tr>
<tr>
<td>EPAC</td>
<td>2.5</td>
<td>0.042</td>
<td>1.008</td>
</tr>
<tr>
<td>M9</td>
<td>10.2</td>
<td>0.039</td>
<td>1.007*</td>
</tr>
<tr>
<td>M11</td>
<td>2.1</td>
<td>0.031</td>
<td>1.004*</td>
</tr>
<tr>
<td>M12</td>
<td>2.1</td>
<td>0.043</td>
<td>1.002*</td>
</tr>
</tbody>
</table>

*These values were calculated by using the maximum total plasma concentrations in the clinical studies instead of using Cmax, owing to a lack of certain parameters for the estimation of the IC₅₀ value. Refer to Materials and Methods section for details of the R value calculation.
In vitro evaluation of EPAC and its metabolites as a potential perpetrator for OAT1-, OAT3 or OCT2-mediated drug-drug interactions

<table>
<thead>
<tr>
<th>Compound</th>
<th>Free C<sub>max</sub>/IC<sub>50</sub></th>
<th>OAT1</th>
<th>OAT3</th>
<th>OCT2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µM</td>
<td>µM</td>
<td>µM</td>
<td>µM</td>
</tr>
<tr>
<td>EPAC</td>
<td>0.049</td>
<td>>300</td>
<td><0.0002</td>
<td>21</td>
</tr>
<tr>
<td>M9</td>
<td>1.95</td>
<td>N/I</td>
<td>N/A</td>
<td>>300</td>
</tr>
<tr>
<td>M11</td>
<td>0.263</td>
<td>N/I</td>
<td>N/A</td>
<td>14</td>
</tr>
<tr>
<td>M12</td>
<td>0.080</td>
<td>8.6</td>
<td>0.009</td>
<td>21</td>
</tr>
</tbody>
</table>

N/A, Not applicable; Nd, No inhibition was observed over the range of the concentrations tested.

>200 µM, and it inhibited the uptake mediated by OATP1B3 with an IC₅₀ of 27 µM. M11 inhibited the uptake mediated by OAT3, OATP1B3, OCT2, and OATP1B1, with IC₅₀ values of 14, 19, 23, and 68 µM, respectively. M12 was a weak inhibitor of OATP1B3, with an IC₅₀ value >200 µM, and it inhibited the uptake mediated by OAT1, OAT3, OCT2, and OATP1B1 with IC₅₀ values of 8.6, 21, 21 and 49 µM, respectively (Table 3).

The calculated ratios of total C_{max}/IC₅₀ for hepatic uptake transporters OATP1B1 and OATP1B3 and the ratios of unbound C_{max}/IC₅₀ for renal uptake transporters OAT1, OAT3, and OCT2 are less than 0.1, except that the ratios of total C_{max}/IC₅₀ of M9 and M11 for OATP1B3 are greater than 0.1 (0.38 and 0.11, respectively) (Tables 5 and 6). Because the ratios of total C_{max}/IC₅₀ of M9 and M11 for OATP1B3 are greater than 0.1, the R values of M9 and M11 were calculated using extrapolation (Table 5) by following the decision tree in the FDA guidance (FDA, 2012). The estimation of I_{in,max} of metabolites is difficult because parameters such as k_a, F_a, F_g, and dose are difficult to estimate. For this reason, the R values of M9 and M11 were calculated using total C_{max} instead of I_{in,max}; therefore, the R values may be underestimated. Because F_a × F_g and k_a are not known, F_a × F_g and k_a values were set as 1 and 0.1, respectively, and the resulting R values are less than the cutoff value of 1.25 recommended by FDA, suggesting a low potential of the two metabolites to cause OATP1B3-mediated DDI. In general, the potential of EPAC and its metabolites to cause clinical DDIs via inhibition of OATP1B1, OATP1B3, OAT1, OAT3, or OCT2 is low based on their exposure and inhibitory potency.

Discussion

In the current investigation, we took a comprehensive approach to determine the in vitro interactions of both EPAC and its major metabolites with key drug transporters involved in drug absorption and disposition and assessed their potential to cause transporter-mediated DDIs. By following this approach, we were able to understand the molecular mechanisms of the disposition of both EPAC and its metabolites in humans and elucidate the complex process of metabolism, transport, and enzyme-transporter interplay. With such important information, our understanding of the underlying mechanisms of the pharmacokinetics of EPAC can be substantially improved, and the ongoing clinical development of this promising investigational drug can benefit from the knowledge derived from this investigation.

EPAC is found to be a substrate of P-gp and BCRP, which are key efflux transporters expressed in human intestine, brain, liver, and kidneys. In a clinical pharmacokinetic study, the exposure of EPAC increased in a dose-proportional manner in the range of 50–400 mg twice daily. Therefore, the role of efflux transporters, including P-gp and BCRP, in limiting oral absorption of EPAC might be insignificant at the doses (up to 300 mg BID) used in the clinical development. Although the uptake of EPAC was higher in CHO cells expressing OATP1B1 or OATP1B3 than that in control cells, the uptake of EPAC was not significantly inhibited by an inhibitor of OATP1B1, cerivastatin.

Therefore, EPAC may not be a substrate for OATP1B1 or OATP1B3. Given its moderate membrane permeability, the major route for EPAC is found to be a substrate of P-gp and BCRP, which are key efflux transporters expressed in human intestine, brain, liver, and kidneys. In a clinical pharmacokinetic study, the exposure of EPAC increased in a dose-proportional manner in the range of 50–400 mg twice daily. Therefore, the role of efflux transporters, including P-gp and BCRP, in limiting oral absorption of EPAC might be insignificant at the doses (up to 300 mg BID) used in the clinical development. Although the uptake of EPAC was higher in CHO cells expressing OATP1B1 or OATP1B3 than that in control cells, the uptake of EPAC was not significantly inhibited by an inhibitor of OATP1B1, cerivastatin.

Therefore, EPAC may not be a substrate for OATP1B1 or OATP1B3. Given its moderate membrane permeability, the major route for EPAC to enter hepatocytes may be through passive diffusion.
The involvement of EHC in the disposition of EPAC is suggested by the distinct secondary peaks in the profiles of EPAC in healthy human subjects (Fig. 2). We postulated that the glucuronide conjugate M9 (the most abundant circulating metabolite) may participate in the EHC of EPAC because glucuronide metabolites are frequently shown to be involved in the EHC of a drug. Thus, the interactions of M9 with hepatic drug transporters were investigated to gain insight about the disposition of M9 in the liver and its implication for the pharmacokinetics of EPAC. Whereas EPAC, M11, and M12 exhibit moderate permeability, the more hydrophilic M9 displays very low permeability in Caco-2 cells (Table 2), making it heavily reliant on interactions with transporters to cross cell membranes (Zamek-Gliszczynski et al., 2014). Among the major canalicular efflux transporters (MRP2, BCRP, and P-gp) responsible for biliary excretion of drugs and metabolites, MRP2 (Fig. 7A) and BCRP (Fig. 3F) likely participate in the biliary excretion of M9. Given its low permeability and high systemic exposure, we suspected that M9 may be excreted to blood by the basolateral efflux transporter MRP3 after its formation in hepatocytes. Our results indeed confirmed that M9 is a MRP3 substrate (Fig. 7B). Whether M9 is also a substrate of other basolateral efflux transporters (such as MRP4) remains to be determined. M9 is also shown to be taken up by OATP1B1 and OATP1B3, the major uptake transporters in the basolateral membrane of hepatocytes (Fig. 5, B and F), suggesting that the circulating M9 in the blood relies on uptake transporters to enter hepatocytes for its biliary excretion.

As illustrated in Fig. 8, our data suggest that once formed within the hepatocytes by UGT1A9 enzyme, M9 relies on interactions with the canalicular efflux transporters MRP2 and BCRP to be excreted into the bile, the basolateral efflux transporter MRP3 to be excreted into the blood, and the basolateral uptake transporters OATP1B1 and OATP1B3 to be transported from the blood back into the hepatocytes for its subsequent biliary excretion. By preventing saturation of the canalicular efflux transporters in the upstream hepatocytes, these basolateral transporters (MRP3 and OATPs) present in the upstream and downstream hepatocytes may work in concert for efficient sinusoidal excretion and basolateral reuptake of M9. Similar to the interactions of M9 with the transporters in the liver, glucuronide conjugates of some drugs, including ezetimibe (Oswald et al., 2008; de Waart et al., 2009) and diclofenac (Zhang et al., 2016), are also excreted to blood by MRP3 and taken up by OATPs for their subsequent biliary excretion by canalicular efflux transporters (including MRP2 and BCRP). The recently reported phenomenon, “hepatocyte hopping,” is believed to be important in hepatic disposition of glucuronide conjugates, such as bilirubin glucuronide (Jusuf et al., 2012) and sorafenib glucuronide (Vasilyeva et al., 2015). Vasilyeva et al. (2015) hypothesized that considering the broad substrate specificity of these hepatic transporters (MRPs and OATPs), other xenobiotics undergoing hepatic glucuronidation can be subject to the hepatocyte hopping process similar to that of sorafenib glucuronide. Although more studies are needed in this emerging area in the future, the transporter-mediated disposition of glucuronide metabolites of EPAC, ezetimibe, and diclofenac in the liver might support this hypothesis.

Potentially, modulation of the interactions of M9 with the transporters responsible for its disposition may have an impact on the pharmacokinetics of EPAC because of the high systemic exposure and possible involvement of M9 in the EHC of EPAC. In this regard, the observed clinical DDI between mycophenolate mofetil (an immunosuppressive drug) and cyclosporine (Pou et al., 2001; Shipkova et al., 2001; Zamek-Gliszczynski et al., 2014) and the impact of OATP1B3 polymorphism on the pharmacokinetics of mycophenolate mofetil (Picard et al., 2010; Zamek-Gliszczynski et al., 2014) may be a good example to demonstrate the importance of glucuronide metabolite-transporter interactions in the pharmacokinetics of a drug undergoing EHC. Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil (a prodrug), and mycophenolic acid glucuronide (MPAG) contributes to the EHC of MPA. Coadministered cyclosporine may disrupt the EHC process of MPA by inhibiting the OATP1B1-mediated uptake of MPAG and led to elevated systemic concentrations of MPAG, reduced availability of MPA for EHC, and eventually a decrease in the systemic exposure of MPA (Picard et al., 2010). Similarly, MPA exposure in the patients carrying a genetic variant of OATP1B3 was lower than that in the patients carrying wild-type OATP1B3 because the hepatic uptake of MPAG was impaired as a result of the reduced function of the OATP1B3 variant, and thus the biliary excretion of MPAG was decreased, resulting in the decreased EHC of MPA (Picard et al., 2010).

In this study, we also evaluated the potential of EPAC and its major metabolites to cause transporter-mediated clinical DDIs. Based on their inhibitory potency and human exposures, the risk of EPAC, M9, M11, and M12 to cause clinical DDIs via inhibition of P-gp, BCRP, OATP1B1, OATP1B3, OAT1, OAT3, or OCT2 was estimated to be low (Tables 4–6). It is worth noting that some challenges exist in evaluating the risk of transporter-mediated DDI caused by metabolites. One of these challenges is estimation of IC50 concentration (theoretical maximum concentration in the intestine). Usually, metabolite concentrations at the intestinal level are not readily calculable because the liver is the major site for metabolism. In the case of EPAC metabolism, M9 is formed from EPAC by the gut flora, and most of the M9 is moved from the bile to the intestine, where M9 can be deconjugated to form EPAC. Consequently, it is difficult to determine the maximum intestinal concentrations of M11 and M9. Under the most conservative consideration, if all EPAC molecules after an oral dose of 300 mg (the highest dose in clinical development) are converted to M11 (in the intestine) or M9 (in the liver), with all M9 molecules moving to the intestine, the IC50 concentrations of M11 and M9 would be the same as that of EPAC (2740 μM). Thus, the ratios of IC50/IC50 of both metabolites would be less than 10, indicating a low risk of DDIs resulting from inhibition of P-gp or BCRP. When the R value is used to evaluate OATP1B1-mediated DDIs, estimation of Imax of metabolites is another challenge because some parameters, such as k, Fw, and dose, of metabolites are difficult to estimate. In the cases of M9 and M11, the R values were calculated based on total Cmax instead of Imax; therefore, the R values may be underestimated.

In conclusion, the in vitro interactions of both EPAC and its major metabolites with key drug transporters involved in drug absorption and disposition were evaluated in this study. EPAC is shown to be a substrate for BCRP and P-gp but not a substrate for OATP1B1 or OATP1B3. Given the high involvement of M9 in the EHC of EPAC observed in humans, we also identified the transporters involved in the disposition of M9 (EPAC glucuronide) in the liver. M9 is a substrate for multiple uptake (OATP1B1 and OATP1B3) and efflux (MRP2, MRP3, and BCRP) transporters. The pharmacokinetics of EPAC may be potentially influenced by modulation of the transporter-mediated disposition of M9 in the liver. The risk of EPAC and its major metabolites to cause clinical DDIs by inhibiting the drug transporters tested was estimated to be low. Our research underlines the importance of metabolite-transporter interactions in the disposition of clinically relevant metabolites, which may have implications for the pharmacokinetics and drug interactions of parent drugs.

Authorship Contributions
Participated in research design: Q. Zhang, Y. Zhang, Boer, Hu, Diamond, Yeleswaram.
Conducted experiments: Q. Zhang, Y. Zhang, Boer, Hu.
Performed data analysis: Q. Zhang, Y. Zhang, Boer, Shi, Hu.
Wrote or contributed to the writing of the manuscript: Q. Zhang, Y. Zhang, Shi, Diamond, Yeleswaram.
Interactions of Epacadostat with Transporters

References

Address correspondence to: Dr. Qiang Zhang, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803. E-mail: qzhang@incyte.com.