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Fig. 4. Relationship between median clearance values and computed physicochemical parameters. The median value is indicated by the horizontal line in the gray box, and
the lower and upper limits of the box represent the first and third quartiles, respectively. The black points represent the compounds. (A) Clearance vs. ionization state. (B)
Clearance vs. logD7 4. (C) Clearance vs. PSA. (D) Clearance vs. NRB. (E) Clearance vs. number of HBAs. (F) Clearance vs. number of HBDs.

VD, is generally dominated by physicochemical properties, largely
fraction ionized, and lipophilic, even after removal of the protein binding
aspect (Lombardo et al., 2002, 2004). As opposed to VD, CL is largely
dependent on affinities and intrinsic activities for specific enzymes and
transporters. Affinities and intrinsic activities will be somewhat de-
pendent on basic physicochemical properties, but also on the interactions
of specific substituents and fragments with macromolecules involved in
drug metabolism and disposition.

Time-Dependent Variations. A plot of year of first appearance,
binned according to the year and colored by VD, (Fig. 7, left), CL (Fig.
7, right), fraction unbound in plasma (Fig. 8, left), and clogD; 4 (Fig. 8,

right) does not seem to indicate any particular trend for the first two
properties (using the same number of compounds with f,, data available),
whereas some increase toward more lipophilic compound and lower f,
(as they are generally inversely correlated) could be discerned, as shown
in Fig. 8. In particular, the bin representing compounds clogD7 4
between —1 and O (Fig. 8, right) was reduced to a very low 4% in the
period from 2000 to the present, possibly influenced by the significantly
fewer number of total compounds we could retrieve from the literature.
A plot of year of first appearance in the literature (Fig. 9) binned as
approximately 2 decades per section, and with compounds reported prior
to 1960 as one bin, shows a significant trend, with compounds having a
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Fig. 5. Relationship between median fraction unbound in plasma (f,) values and computed physicochemical parameters. The median value is indicated by the horizontal line
in the gray box, and the lower and upper limits of the box represent the first and third quartiles, respectively. The black points represent the compounds. (A) f, vs. ionization
state. (B) f, vs. logD74. (C) f, vs. PSA. (D) f, vs. NRB. (E) f, vs. number of HBAs. (F) f, vs. number of HBDs.

MW above the median value of the present set (371 Da) increasing
steadily. The rate was 20% above the previous 20 years starting from
1960 to 1980 and reached 80% in the period from 2000 to the present.
This finding was also coupled with a significant reduction in compounds
reported, which showed a decrease by a 3-fold margin from the
2 decades spanning 1980-2000.

Discussion

In this work, we sought to expand the human pharmacokinetic data set
that we originally described in 2008 (Obach et al., 2008). The number of

compounds in the current set is approximately doubled, and thus
merited a renewed evaluation of the overall trends and relationships
between the pharmacokinetic parameters and fundamental physico-
chemical properties. As before, the set of 1352 compounds encom-
passes a wide variety of drugs in a broad range of therapeutic areas
and, consequently, a wide variety of structural characteristic, pharma-
cokinetic values, and physicochemical descriptors. The data were
carefully curated (as described in detail in the Materials and
Methods) and strictly from intravenous administration. Thus, these
data should not only be of use for this analysis, but they are
also available (in the Supplemental Material) for others to use to
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Fig. 6. Relationship between total and free VDy; or total and free clearance values and computed logD; 4. Acidic compounds are represented by red dots, basic compounds
by blue dots, neutral compounds by green dots, and zwitterionic compounds by yellow dots. (A) Total VDg,. (B) Free VDy,. (C) Total clearance. (D) Free clearance.

develop other relationships and models. Overall, trends in the
pharmacokinetic parameters between the original data set and this
doubled data set were the same; ranges, means, and medians were
largely unchanged. In this work, we also examined the impact of
the year of first disclosure, as reported in SciFinder, although those
data do not necessarily reflect the year of discovery (likely earlier)
or the introduction of the compound into therapy, which may have
happened at a significantly later point. It is possible that, by
binning the time ranges (see the Results) by 2 decades (or overall
before 1960), we may have attenuated such differences and grouped
compounds in reasonably comparable “periods.” We will discuss
time-related findings below.
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Among the pharmacokinetic parameters collected, VD is the one
that has the most marked relationships with physicochemical properties.
VD is largely a function of differential partitioning between plasma and
other tissues, which in turn is a function of nonspecific binding to tissue
components and plasma proteins, such as albumin. Such nonspecific
interactions are largely dependent on the physicochemical characteris-
tics of the drug. Charge state has an influence on cationic compounds
showing generally greater VD, values, but there is considerable overlap
that shows that other factors such as lipophilicity also have an influence
(Fig. 3). The relationship to lipophilicity becomes stronger when VD is
corrected for plasma free fraction (Fig. 6). VD, shows the same
proportion of compounds (43%) with values < 0.7 1/kg, taken as total
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Fig. 7. Distribution of total VD and clearance values utilizing value ranges reported in Table 1 against vertical bins based on year of first disclosure. The bins after
1960 span approximately 2 decades, and the colors indicate property range values in ascending order from blue to red or brown (bottom to top).
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Fig. 8. Trends in the distribution of f,, and computed logD- 4 values utilizing the ranges reported in Table 1 for f, and the same ranges as in Fig. 2 for computed logD7 4. The
value ranges and frequency of compounds are reported against vertical bins based on year of first disclosure. The bins after 1960 span approximately 2 decades, and the
colors indicate property range values in ascending order from blue to red or brown (bottom to top).

body water, whereas only a small proportion is confined to blood
volume (taken as 0.1 I/kg). Therefore, a large proportion does exceed the
total body water value, but this is only an indication of the resulting
“distributional average” of the compound in the body, and it does not
inform about the presence of the compound in a particular organ or at an
intended target.

In Fig. 6, we show the trend and correlation between computed
logD; 4 with either VD or clearance, both total (Fig. 6, A and B) and
free (Fig. 6, C and D). We note that although there is a seemingly clearer
trend in the case of the free value of both parameters, the one for VDg
starts being more noticeable even when examined via total VDg,
whereas the corresponding plot for total clearance does not allow
discernment of much of a trend. In fact, Fig. 3B (median and distribution
of total VD) does show an increment of the median value for total VD
versus computed logD5 4, whereas the corresponding plot (Fig. 4B) for
total clearance does not. If we compare more broadly Fig. 3, B-F, for
VD, and the corresponding Fig. 4, B-F, for clearance, we note that not
much of a correlation is discernible between (total) clearance and the
computed descriptors shown in the case of clearance. At the same time
(Fig. 3), VD, shows trends between median values and computed
descriptors, which are opposite, as expected, in the case of logD; 4
versus PSA as well as HBAs and HBDs. In the case of the correlation of
free parameters with computed logD- 4, the VD plot (Fig. 6B) seems to
yield a higher positive slope than does the plot for free clearance versus
computed logD5 4 (Fig. 6D).

Unlike VD, clearance is driven by interactions between drugs and the
drug-metabolizing enzymes and/or drug transporters involved in their
clearance, as well as plasma protein binding. The interaction of
individual drugs with enzymes and transporters is more a function of
specific ligand-protein interactions as opposed to nonspecific interac-
tions; thus, relationships between gross physicochemical properties and
clearance should not be as apparent as they are for VD (see Fig. 4).
Compounds with low free fractions could also have lower CL, so a slight
relationship between free CL and lipophilicity can be observed after
correction of CL to free CL (Fig. 6). Overall, relationships between free
CL and physicochemical parameters are not nearly as discernible as they
are for free VD. In addition, investigators have reported computational
models in which they used continuous physicochemical descriptors for
models of VD (Gleeson et al., 2006; Berellini et al., 2009; Lombardo and
Jing, 2016), while they found it necessary to use structural descriptors
(i.e., fragments) to improve the predictive power of clearance models
even though the prediction of the general clearance mechanism (metabolic
vs. renal vs. biliary) did not require the latter descriptors for a good
performance (Berellini et al., 2012; Lombardo et al., 2014). Therefore,
lipophilicity alone does not describe the clearance behavior of drug

compounds, although it is certainly an important component for the
elimination of xenobiotics via more polar and water-soluble compounds.

In general, the behavior of metabolic enzymes (and transporters) can
be quite complex, and many examples in which identical lipophilicity
yields a very different clearance outcome can be found in the literature.
Smith (1997) pointed out that clearance differences are related to the
propensity toward N-demethylation in a small series of benzodiazepines
rather than bulk lipophilicity. Similarly, Stepan et al. (2011) described
the discovery of a sizable series of y-secretase inhibitors, where
substitution, regioisomerism, and stereochemistry were responsible for
large variations in scaled in vitro hepatic clearance in many cases,
whereas changes in experimental ElogD were barely discernible or not at
all measurable. Due to the complexity, redundancy, and promiscuity of
metabolic enzymes and transporters, layered upon selectivity and safety
considerations, the outcome is clearly very complex and multidimen-
sional. Along the same lines are the comments of other researchers such
as Broccatelli et al. (2018, p. 524), who stated that “f1,, optimization
via lipophilicity reduction without addressing a metabolic soft-spot
is unlikely to work.”

In addition to the pharmacokinetic parameters, we also collected
plasma protein binding data for as many of the compounds in the
data set as available. This was done primarily to be able to correct
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Fig. 9. Trend of MW utilizing the median value (371 Da) of the entire data set as
threshold vs. vertical bins reflecting years of first disclosure.
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total VD and CL values to free values for comparison with physico-
chemical properties. However, with these data, we also could compare
free fraction values to physicochemical properties. Plasma binding is
mostly driven by albumin (at approximately 600 uM or 42 g/l; Davies
and Morris, 1993) and a1-acid glycoprotein (at approximately 43 uM or
1.8 g/1; Davies and Morris, 1993), with the former mostly associated
with binding anionic drugs and the latter, primarily but not exclusively,
associated with binding cationic drugs (Meijer and Van der Sluijs, 1987;
Israili and Dayton, 2001; Ghuman et al., 2005; Kremer et al., 1988).
Protein binding correlated with lipophilicity (Fig. 5). We also pointed
out in the Results that the generally accepted notion of a much higher
binding for acidic compounds is not strongly supported by “clustering”
for anionic, cationic, and neutral molecules, although the anionic
compounds, acidic in nature, do seem to show a lower overall
median f, than basic (cationic) compounds. There is a great deal of overlap
and many “exceptions” exist to the perceived much greater binding of
anionic compounds to plasma proteins. Zwitterionic compounds do
show a discernibly different median, likely due to their ability to interact
with a broader set of proteins but, once more, with a great deal of overlap
and not much clustering. Lipophilicity (Fig. 5B) and number of HBDs
(Fig. 5F) do show a negative (increasing logD, 4 decreases f,) and a
positive (increasing number of HBDs increases f,,) trend, respectively,
although very few compounds are present in the 7-10 bin for HBDs and
a much lower median is observed for the uppermost bin, probably due
to the presence of larger molecules and opposing factors. The flexibility
of a molecule, expressed as the NRB (Fig. 5D), does seem to show a
negative correlation, perhaps only for molecules within the lower three
bins, and flexibility may play a detrimental role toward free fraction,
similar to the effect on absorption. However, this effect, if real, manifests
itself well before the classic threshold outlined by Veber et al. (2002) of
10 rotatable bonds. We also note that the original observation was
reported with the aim of exploring the effect of flexibility on absorption,
and the data set was based on permeability across artificial membranes,
so the significance in this context is not clear.

Finally, we also gathered data to indicate whether human pharmaco-
kinetic, and even physicochemical, properties have been changing over
time. We used the date of first disclosure of a compound, which is not an
entirely accurate description of when a compound was first synthesized
or discovered but it offered the best surrogate for the analysis. What is
interesting is that while lipophilicity of the drugs in our data set increased
in more recent years (Fig. 8, right), values of CL and VD have generally
remained constant (Fig. 7), albeit VD values have increased a bit. We
also highlight the findings illustrated in Fig. 9, which show a significant
trend toward higher MW in more recent times. A possible explanation
for this behavior may be represented by the exploration of different and
more complex drug space, such as protein-protein interaction and thus
the pursuit of larger molecules needed to disrupt shallower protein-
protein interaction clefts. This may include exploration of peptide drugs
with perhaps a significant deviation from the earlier oral drug paradigm,
to achieve modulation of otherwise inaccessible therapeutic targets.
Another possibility is represented by the expansion of techniques and
trends in combinatorial chemistry, which has influenced upward the
MW of compound libraries across the industry perhaps most notably in
the 1980s and 1990s. This may have manifested a bit later with larger
compounds entering clinical trials. Increasing MW and lipophilicity
in new drugs may be due to the desire to impart increased potency
and/or greater target selectivity. Such desired properties can require
the generation of larger, more lipophilic drugs. As mentioned above,
increased lipophilicity can yield increased plasma protein binding,
but also increased tissue binding and increased metabolic intrinsic
clearance. These properties may all “cancel” each other out and thereby
CL and VD may not change, as shown in Fig. 7.

Lombardo et al.

In conclusion, we have summarized a human pharmacokinetic data
set that is, to our knowledge, currently the largest of its kind. We have
exhaustively searched the scientific literature and other sources for
bona fide human intravenous pharmacokinetic studies and scrutinized
the methods and data presented. These data have proven valuable in
examining relationships between fundamental human pharmacokinetic
parameters VDgs and CL with various basic physicochemical properties.
The data set in this report approximately doubles our previous report
from a decade ago (Obach et al., 2008), yet the relationships between
human pharmacokinetic parameters and physicochemical properties
have remained largely unchanged. These data (available in the
Supplemental Material) can be used and mined by others interested
in deriving relationships between structure and human pharmaco-
kinetics. Our own efforts are ongoing to establish whether trends
relating particular structural entities and human pharmacokinetic
parameters can be determined.
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providing the data has now been corrected.
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