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ABSTRACT

The widespread expression and polyspecificity of the multidrug
ABCG2 efflux transporter make it an important determinant of the
pharmacokinetics of a variety of substrate drugs. Null ABCG2
expression has been linked to the Junior blood group. Polymor-
phisms affecting the expression or function of ABCG2 may have
clinically important roles in drug disposition and efficacy. The
most well-studied single nucleotide polymorphism (SNP), Q141K
(421C>A), is shown to decrease ABCG2 expression and activity,
resulting in increased total drug exposure and decreased re-
sistance to various substrates. The effect of Q141K can be
rationalized by inspection of the ABCG2 structure, and the effects
of this SNP on protein processing may make it a target for
pharmacological intervention. The V12M SNP (34G>A) appears

to improve outcomes in cancer patients treated with tyrosine
kinase inhibitors, but the reasons for this are yet to be estab-
lished, and this residue’s role in the mechanism of the protein is
unexplored by current biochemical and structural approaches.
Research into the less-common polymorphisms is confined to
in vitro studies, with several polymorphisms shown to decrease
resistance to anticancer agents such as SN-38 andmitoxantrone.
In this review, we present a systematic analysis of the effects of
ABCG2 polymorphisms on ABCG2 function and drug pharmaco-
kinetics. Where possible, we use recent structural advances to
present a molecular interpretation of the effects of SNPs and
indicate where we need further in vitro experiments to fully
resolve how SNPs impact ABCG2 function.

Introduction

The ATP-binding cassette (ABC) transporters are a family of
membrane-bound protein pumps, which use the hydrolysis of ATP to
transport compounds across membranes. They function in a variety of
cellular processes such as nutrient uptake, osmotic homeostasis, and
protection from xenotoxins. Eukaryotic ABC transporters are possi-
bly exclusively involved in the efflux of molecules from the cytosol;
either out of the cell or into organelles within the cell. These molecules
include endogenous compounds such as metabolic products and
lipids, as well as xenobiotics and xenotoxins, which are of great
clinical interest (Mo and Zhang, 2012). Humans possess 48 different
ABC transporters, which are categorized into groups ABCA to ABCG
(Dean et al., 2001). The three main ABC transporters under study in
relation to drug uptake and elimination are ABCB1 (P-glycoprotein),
ABCC1 (MRP1), and ABCG2 (breast cancer resistance protein). The
ability of these three transporters to efflux multiple, structurally
different drugs implicates them in multidrug resistance (MDR) and
the efflux of compounds from cells, lowering intracellular concen-
tration and producing relative resistance to a broad variety of drugs
(Wong et al., 2014).

The ABC subfamily G isoform 2 (ABCG2) protein is a MDR pump
with a wide distribution in the human body, which is found in the small
intestine, blood-brain barrier, blood-placenta barrier, liver canalicular
membranes, proximal tubule cells of the kidney, and the mammary
gland (Horsey et al., 2016). The functions of ABCG2 at its widespread
locations are summarized in Table 1, and to illustrate the diversity of its
substrate repertoire endogenous and xenobiotic substrates are shown in
Fig. 1. The wide distribution and polyspecificity of ABCG2 make it an
important determinant of the pharmacokinetics of various substrate
drugs (Lee et al., 2015).
ABCG2 was originally identified in 1998 in placenta and multidrug

resistant breast cancer cell lines; hence, it was given the names breast
cancer resistance protein and placenta-specific ABC transporter
(Allikmets et al., 1998; Doyle et al., 1998; Miyake et al., 1999). Both
titles are misnomers: ABCG2 is certainly not restricted to the placenta
(Table 1) and clinical correlations between ABCG2 and breast cancer
staging, metastasis, and outcome are equivocal (Faneyte et al., 2002;
Xiang et al., 2011). On the other hand, the relationship between ABCG2
and the prognosis of hematologic cancers is better developed. Poorer
outcomes have been shown in large B-cell lymphoma (Kim et al.,
2009b) and acute myeloid leukemia in patients with higher ABCG2
levels (Van den Heuvel-Eibrink et al., 2002; Benderra et al., 2004).
ABCG2 also has an established link to survival rates and therapyhttps://doi.org/10.1124/dmd.118.083030.

ABBREVIATIONS: ABC, ATP-binding cassette; AUC, area under the curve; Jr, Junior; MDR, multidrug resistance; MSD, membrane-spanning
domain; NBD, nucleotide binding domain; SASP, sulfasalazine; SNP, single nucleotide polymorphism; TKI, tyrosine kinase inhibitor; TM,
transmembrane; WT, wild type.
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response in small-cell and non-small-cell lung cancer (see Mo and
Zhang, 2012; Horsey et al., 2016).
Along with cancer outcomes, there is a strong and well-researched link

between ABCG2 and the development of gout (Woodward et al., 2013).
Polymorphisms of ABCG2 (throughout this paper we refer to the gene as
ABCG2 and the protein as ABCG2) can result in increased serum urate
levels (hyperuricemia); recent analysis of factors correlated with renal urate
clearance supports the hypothesis that ABCG2’s role in gout is through
decreased gut export of urea (Ichida et al., 2012; Kannangara et al., 2016).
Interestingly, recent studies have also hypothesized a link betweenABCG2
and the development of Parkinson’s andAlzheimer’s disease. The common
polymorphism 421 C.A (Q141K at the amino acid level, described in
more detail subsequently) was correlated to a delay in the onset of
Parkinson’s (Matsuo et al., 2015) due to an increased concentration of urate
in the central nervous system, hypothesized to have a protective effect in the
brain (Ascherio et al., 2009). ABCG2 has been found to be upregulated in
the brains of Alzheimer’s patients, and 421CC genotypes showed
significantly increased susceptibility to Alzheimer’s compared with CA
andAA (Xiong et al., 2009; Fehér et al., 2013). At this time, themechanism
of the effects of ABCG2 on Alzheimer’s development appears unclear,
although amyloid beta 1–40 peptide transport has been documented for
ABCG2 (Do et al., 2012). Additional functions for ABCG2 in stem cell
protection (both with respect to cancer stem cells and hematopoietic stem
cells) and as a marker of autophagy have been described in the literature,
although full appreciation of the importance of ABCG2 in these scenarios
remains to be revealed (Zhou et al., 2001; Hirschmann-Jax et al., 2004;
Krishnamurthy et al., 2004; Ding et al., 2016).

Many anticancer drugs have been discovered as ABCG2 substrates,
such as camptothecin analogs (diflomotecan, irinotecan, and topotecan),
tyrosine kinase inhibitors (gefitinib, imatinib, and erlotinib), and other
agents (methotrexate and mitoxantrone). Cisplatin, paclitaxel, and
vinblastine are not substrates (Stacy et al., 2013) and the anthracyclines
doxorubicin and daunorubicin are substrates only of drug-selected
ABCG2 variants (Robey et al., 2003). Other xenobiotics that have been
discovered as substrates include statins, direct oral anticoagulants, anti-
human immunodeficiency virus drugs, antirheumatics, immunosuppres-
sants, and antibiotics (see Fig. 1 for some chemical structures of
transported drugs and natural ABCG2 substrates that clearly demon-
strates the chemical diversity of its substrates). Alongside traditional
anticancer drugs, photodynamic therapy agents such as pheophorbide A
and protoporphyrin A have been confirmed as substrates, possibly
influencing the effects of photodynamic therapy in some individuals
(Robey et al., 2004, 2005; Westover and Li, 2015). Therefore,
polymorphisms reducing ABCG2 efflux activity may be of potential
importance in contributing to diet-induced phototoxicity, protoporphy-
ria, and other porphyrin-related disorders (Jonker et al., 2002). This
exemplifies the importance of understanding how polymorphisms affect
ABCG2 function, and for this we will need a detailed description of the
structure of the resultant protein.
ABCG2 is coded for by the ABCG2 gene at chromosome 4q22

(Bailey-Dell et al., 2001), and transcription of the gene is regulated by a
TATA-less promoter region, containing several specificity protein-1
transcription factor binding sites (Yang et al., 2013). Translation of the
mRNA results in the production of a 655 amino acid protein (;65 kDa).

TABLE 1

An overview of the expression and functions of ABCG2

In addition to these locations, ABCG2 has been found in the adrenal gland, cervix and uterus, bladder, and lungs.

Location of ABCG2 Action/Function at Site Reference

Small intestine enterocytes Efflux of compounds into lumen of GI tract; reduced absorption
of drugs into bloodstream; protection of body from
absorption of toxins and xenobiotics; extrarenal clearance of
uric acid

Maliepaard et al. (2001); Taipalensuu et al. (2001)

Liver canalicular membrane Transport of compounds from bloodstream into hepatocytes and
liver canaliculi; increased excretion of compounds via bile

Maliepaard et al. (2001)

Proximal tubule cells in kidney Transport from blood into proximal renal tubule; increased
excretion of compounds via urine; role in excretion of
uric acid

Maliepaard et al. (2001)

Blood-brain barrier Efflux of compounds from endothelial cells into microvessels;
protection of brain from toxic compounds; role in tolerance to
CNS drugs, e.g., opioids; potential role in CNS diseases, e.g.,
Alzheimer’s disease and Parkinson’s disease

Cooray et al. (2002)

Placental syncytiotrophoblasts Transports compounds across placenta from fetus into maternal
circulation; protection of fetus from toxins and xenobiotics

Maliepaard et al. (2001); Memon et al. (2014)

Mammary gland Transports compounds into breast milk; modulation of vitamin
levels; potential harmful value to infant if mother is receiving
drug treatment while breast feeding

Vlaming et al. (2009)

Erythrocytes Efflux of porphyrins from cell; upregulated in erythroid
maturation; modulation of protoporphyrin IX; determinant in
protoporphyria

Zhou et al. (2005)

Hematopoietic stem cells Efflux of porphyrins from cell; protection from hypoxia and
accumulation of haem; role in stem cell phenotype; role in
hematologic cancer prognosis

Scharenberg et al. (2002); Krishnamurthy et al. (2004)

Hair follicle Protection of the root sheath Haslam et al. (2015)
Basal epithelial cells of prostate Efflux of differentiation-inducing molecules; role in self-

renewal and development of prostate stem cells; role in
regulation of testosterone

Huss et al. (2005); Pascal et al. (2007)

Blood-testis barrier Efflux of compounds from Sertoli cells into interstitium;
protection of developing spermatozoa from xenobiotics
and toxins

Robillard et al. (2012)

Harderian gland Transport into tubulo-alveolar lumen of gland secretions of
lipids and porphyrins

Vlaming et al. (2009)

Inner blood-retinal barrier Efflux of toxins out of retina; protection from phototoxicity Vlaming et al. (2009); Zhang et al. (2017)

CNS, central nervous system; GI, gastrointestinal.
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Structurally, ABCG2 is known as a “half transporter” since it contains
only one membrane-spanning domain (MSD) and one nucleotide binding
domain (NBD) in the polypeptide. The MSD of ABCG2 is found toward
the C-terminus and is composed of six membrane-spanning a-helices
connected by alternating extracellular and intracellular loops (Fig. 2). The
half-transporter structure of ABCG2 means that it must either dimerize or
oligomerize before it becomes functional (Mo and Zhang, 2012; Horsey
et al., 2016), and although the basis of dimer formation is outside the scope
of this review there has been much research in this field (Wong et al.,
2016). Recent publications of structural models for ABCG2 (László et al.,
2016; Khunweeraphong et al., 2017), and the emergence of cryo-electron
microscopy data for the human protein (Taylor et al., 2017; Jackson et al.,
2018), mean that we are now close to being able to determine not only how
a single nucleotide polymorphism (SNP) in ABCG2might manifest at the
level of protein function but also to relate this to its position in the three-
dimensional structure.
An important early finding in this regard was the original cloning of

two ABCG2 variants from drug resistant cell lines, with a substitution at

amino acid 482 from arginine (R) to threonine (T) or glycine (G) (Doyle
et al., 1998; Miyake et al., 1999). These R482G/T variants of ABCG2
were shown by the use of fluorescent probes and radioligand binding to
have a broadened substrate specificity including anthacyclines (Honjo
et al., 2001; Clark et al., 2006). Although it later transpired that the R482
variant sequences were drug-induced mutations (Honjo et al., 2001), it
opened the following question. Could natural polymorphisms ofABCG2
also affect its function?
Many single nucleotide polymorphisms have subsequently been

identified in ABCG2, including promoter, intronic, and protein coding
changes (the latter being displayed in Fig. 2). This review aims to
provide a summary of the researched polymorphisms of the ABCG2
gene, the impact of these polymorphisms on ABCG2 expression/func-
tion, and the resulting effects on pharmacokinetics.

The Polymorphisms of ABCG2

Thirty-eight ABCG2 polymorphisms were identified in the liter-
ature, 21 of which were not included due to lack of significant information.

Fig. 1. Chemical structures of ABCG2 physiological substrates and
pharmacological drug substrates. Structures obtained from PubChem
database.
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The excluded polymorphisms are (single amino acid notation) S13L,
G51C, A149P, R160Q, R163K, Q166E, G268R, G354R, K360X,
E366E, C369T, F373C, G406R, T434M, C474T, S476P, P480L,
M515R, T542A, F571I, and R575X. The majority of these have minor
allele frequencies that are ,0.0001 and some even represent somatic
mutations; it is likely that most are of questionable clinically signifi-
cance. Nevertheless, establishing the effects of ABCG2 polymorphisms
at as many sites as possible would be beneficial in improving knowledge
of the protein’s mechanism. The remaining 24 polymorphisms (see
Table 2 for frequency information and Figs. 2 and 3 for their location in
the topology and three-dimensional structure of ABCG2) will be
described numerically from the N-terminus for convenience.

Polymorphisms in the NBD

The pivotal catalytic role played by the ABC transporter NBDs and
our greater understanding of NBD structure and function should enhance
our ability to rationalize the effects of NBD polymorphisms on ABCG2
function.

V12M (rs2231137)

V12M (34 G.A) (Table 2) is one of the most common polymor-
phisms of ABCG2, with a highly variable frequency depending on
ethnicity. The polymorphism was found at highest frequencies in
Mexican Indians (90%), Pacific Islanders (64%), and South-Eastern
Asians (45%), but more rarely in Caucasian (2%–10.3%), African
American (8.3%), and Middle Eastern populations (5%) (Zamber et al.,
2003; Kobayashi et al., 2005; Poonkuzhali et al., 2008). Residue V12 is
located intracellularly, close to the N-terminus of the polypeptide.
This region has a substantial influence on the localization of the pump

into the plasma membrane, meaning polymorphisms may disrupt the
insertion of ABCG2 into the membrane. Structural data currently do
not include the N-terminal 30 amino acids; therefore, the exact
contribution this region makes to the fold of ABCG2 remains unclear
(Taylor et al., 2017). In vitro examination of V12M shows expression
system–dependent effects on ABCG2 localization and expression
level, which makes it important to verify the effects of polymorphisms
in cell lines as close as possible to the in vivo setting (Imai et al., 2002;
Kondo et al., 2004; Mizuarai et al., 2004; Morisaki et al., 2005). For
V12M, the closest to this comes in a study using Flip-In 293 cell line
transfectants, where reduced transport of SN-38 was observed
(Tamura et al., 2007a). An in vivo study on liver tissues in a Hispanic
population did find that ABCG2 mRNA expression was lower in
V12M, possibly as a result of alternative splicing (Poonkuzhali et al.,
2008). However, lower ABCG2-V12M protein expression in tissues
is yet to be found (Zamber et al., 2003).
If V12M does lower protein expression, this would impact urate

transport or cancer chemotherapy. There are conflicting reports
regarding the impact on V12M in the development of gout. Several
studies have found no significant effect of V12M on urate transport
and gout development (Matsuo et al., 2009; Higashino et al., 2017).
Despite this, a recent meta-analysis of data concluded that V12M did
exert a protective effect against gout. The study found an odds ratio of
0.76 (24% reduction in gout risk) when comparing Czech populations
with New Zealand Polynesian and UK Biobank data (Stiburkova et al.,
2017). In terms of cancer chemotherapy, there are again conflicting reports.
For tyrosine kinase inhibitor (TKI) therapy, overall survival in non-small-
cell lung cancer was found to be improved in AA/AG genotypes (Tamura
et al., 2012; Chen et al., 2015). Other studies further supported the

Fig. 2. Topology map of ABCG2. The membrane topology of ABCG2 is shown with TM helices represented as cylinders and the NBD as an oval. The location of the SNPs
is indicated using the single letter amino acid code, as is the location of the N-glycosylation site (N596) and intra- and intermolecular disulphide bonds (C592–C608 and
C603–C603).
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influence of the V12M SNP on TKI therapy in chronic myeloid
leukemia and renal cell metastatic cancer (Kim et al., 2009a; van der
Veldt et al., 2011; Tandia et al., 2017); in the latter, the presence of the
34A allele was linked to prolonged progression-free and overall survival
in sunitinib therapy using Kaplan-Meier univariate analysis. Further-
more, 34AA/AG genotypes have been linked to improved outcomes in
chronic myeloid leukemia mediated by increased toxicity of ctyarabine/
anthracycline therapy, with an odds ratio of 8.41 (Hampras et al., 2010). In
slight contrast, V12M has been found to show no effect on rituximab plus
cyclophosphamide-doxorubicin-vincristine-prednisone therapy response
or the side effects of rituximab plus cyclophosphamide-doxorubicin-
vincristine-prednisone treatment (Kim et al., 2008); however, doxorubicin
is not a good substrate of ABCG2, which at least partially explains this
(Mao and Unadkat, 2015). Finally, in terms of cancer, the 34 G.A allele
was associated with lower survival rates in pediatric acute lymphoblastic
leukemia patients and diffuse large B-cell lymphoma (Hu et al., 2007;
Zhai et al., 2012). At this time, the reason for poorer prognosis in V12M
for certain cancers remains unclear. Research into other ABCG2
substrates for the V12M SNP is limited, with single reports indicating
no effect on disposition for the antiretroviral drugs lamivudine in healthy
subjects (Kim et al., 2007) or nelfinavir-receiving patients (Colombo
et al., 2005).

Q126X (rs72552713)

The Q126X polymorphism (376 C.T) is a rare polymorphism
found most commonly in Japanese populations, with a frequency
between 0.9% and 2.4% (Honjo et al., 2002; Imai et al., 2002; Itoda
et al., 2003; Kobayashi et al., 2005). Q126X has been investigated in
other ethnicities such as Caucasians and African Americans, but in
both of these populations the polymorphism was absent (Mizuarai
et al., 2004; Kobayashi et al., 2005). The polymorphism results in a
premature stop codon, and likely in nonsense-mediated RNA decay
and no protein expression in the membrane (Kobayashi et al., 2005). It
is, therefore, expected that the influence of this polymorphism on drug
pharmacokinetics would be considerable, especially in homozygous
carriers (Imai et al., 2002).
Many studies have found a strong connection between the Q126X

polymorphism and increased risk of developing gout (Matsuo et al.,
2009; Zhou et al., 2014; Li et al., 2015), with Matsuo et al. (2009)
showing a significant odds ratio of 5.97. This study also found the
Q126X haplotype was present in up to 13.5% of gout patients in a
Japanese population (Matsuo et al., 2009). Studies focused on the effects

of Q126X on drug pharmacokinetics are rare, most likely due to the low
frequency and assumed outcome (i.e., absence of protein in homozygous
individuals would clearly have a significant impact on intestinal drug
uptake and biliary excretion). A small-scale study has linked the Q126X
polymorphism with sulfasalazine (SASP) pharmacokinetics (Gotanda
et al., 2015), and effects of Q126X on porphryin transport have also been
shown (Tamura et al., 2012). Earlier studies had reported no interaction
between Q126X and lamivudine/gefitinib therapy (Kim et al., 2007;
Akasaka et al., 2010), suggesting that more studies are needed to fully
understand the impact of this polymorphism on drug pharmacokinetics.

Q141K (rs2231142)

Q141K (421 C.A) is probably the most widely studied, common
variant of ABCG2, which is found between the Walker A motif and the
signature region of the NBD (Woodward et al., 2009). The poly-
morphism has a highly variable frequency depending on ethnicity. It is
found commonly in Japanese (26.6%–35%) and Chinese (34.2%–35%)
populations, but more rarely in Caucasian (8.7%–14%), Sub-Saharan
(0.9%), and African American (0%–5.3%) populations (Imai et al., 2002;
de Jong et al., 2004). Multiple studies have looked at the influence of
Q141Kon the function of ABCG2, with differing results as to the impacts
of the polymorphism. A reduction in overall ABCG2 protein expression
has been identified in many studies, both in vitro and in vivo (Imai et al.,
2002; Kondo et al., 2004; Kobayashi et al., 2005; Tamura et al., 2007b;
Furukawa et al., 2009; Sarankó et al., 2013; Woodward et al., 2013).
However, there are studies showing that the mutation also causes reduced
ATPase activity, resulting in decreased transport activity (Mizuarai et al.,
2004; Morisaki et al., 2005). A plausible structural explanation for this is
that when the neutral Q141 is replaced by a positively charged lysine
electrostatic repulsion occurs with transmembrane (TM) helix 1a (see
Fig. 3, B and C), potentially via an arginine residue in this helix (R383)
(Polgar et al., 2009) or the adjacent lysine (K382) (László et al., 2016),
leading to anABCG2 folding defect (Taylor et al., 2017) and degradation
by the endoplasmic-reticulum-associated protein degradation system
(Furukawa et al., 2009).
Reduced ABCG2 expression in the Q141K variant should result in

increased serum-drug concentrations through decreases in gut and urate
clearance. The influence of Q141K on ABCG2 has been widely studied
due to its connection with gout development, with a number of studies
linking Q141K to reduced ATP-dependent urate transport (Woodward
et al., 2009, 2013) and increased risk of gout (Cleophas et al., 2017;
Higashino et al., 2017). In fact, Q141K is one of the most strongly
predictive alleles for high serum urate levels and gout incidence. In
addition to increased gout incidence, Q141K was found to be associated
with reduced response to the gout treatment allopurinol in a genome-
wide association study (Wen et al., 2015). Moreover, Q141K has been
linked to poorer outcomes in prostate cancer, possibly due to reduced
efflux of folate from the tumor (Sobek et al., 2017), resulting in high
folate levels within the tumor that allow cancer cells to proliferate more
rapidly. However, the effects of Q141K are mixed since it also reduces
efflux of docetaxel in prostate tumors, resulting in improved drug
response (Sobek et al., 2017). A wide range of drugs has been
investigated with respect to Q141K, as detailed in the following sections.
Camptothecin Analogs. Camptothecin analogs, i.e., anticancer

agents that inhibit topoisomerase I, have shown mixed results in
Q141K studies. Diflomotecan showed a 299% plasma level increase
in heterozygous Q141K patients compared with wild type (WT)
(Sparreboom et al., 2004). Likewise, an in vitro study showed Q141K
cells were more susceptible to diflomotecan, with IC50 values 1.2- to
2.3-fold lower compared with wild type (Morisaki et al., 2005). Another
camptothecin analog, 9-aminocamptothecin, showed significantly in-
creased area under the curve (AUC) values (i.e., total drug exposure over

TABLE 2

Allelic variants of ABCG2

Allelic Variant SNP Reference Global MAF Prevalent Population

V12M rs2231137 0.158 Native Mexicans, Southeast
Asia, and Pacific

Q126X rs72552713 0.001 Japan
Q141K rs2231142 0.119 Asia
R147W rs372192400 0.0001
T153M rs199753603 0.0002
I206L rs12721643 0.0003
F208S rs1061018 ,0.0001
S248P rs3116448 ,0.0001
P269S rs3116448 ,0.0001 Korea and Vietnam
D296H rs41282401 0.0002
F431L rs750568956 ,0.0001
S441N rs758900849 ,0.0001
F489L rs192169063 0.001
N590Y rs34264773 0.0004
D620N rs34783571 0.003

MAF, minor allele frequency obtained from dnSNP (https://www.ncbi.nlm.nih.gov/projects/SNP).
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time) in 421CA genotypes (Zamboni et al., 2006). This means Q141K
most likely reduces transport of camptothecins comparedwith wild type.
For other topoisomerase inhibitors, where one might also expect to see
increased oral bioavailability in Q141K individuals, the results are less
consistent; increased topotecan oral bioavailabilitywas shown by Sparreboom
et al. (2005) for 421CA genotypes, but was not found in a more recent
study by Li et al. (2013). Q141K was shown to have no significant
influence on the disposition of irinotecan and its metabolite SN-38 in
individuals in three studies (Han et al., 2007; Jada et al., 2007; Sai et al.,
2010), in contrast to an earlier study suggesting a role for Q141K in
irinotecan disposition (de Jong et al., 2004). However, a role for ABCG2
in irinotecan pharmacokinetics was supported by in vitro studies of
cellular resistance to SN-38 (Tamura et al., 2007b; Jandu et al., 2016).
Therefore, more evidence on topotecan and irinotecan pharmacokinetics
is needed before a conclusion on these analogs can be made.
Tyrosine Kinase Inhibitors. Gefitinib pharmacokinetics was the

first to be studied of the TKIs, with Li et al. (2007) demonstrating that

421CA genotypes had 1.5-fold increased steady-state gefitinib accumu-
lation compared with wild type. Q141K was also shown by the same
group to increase the likelihood of diarrhea after gefitinib treatment, but
not skin toxicity (Cusatis et al., 2006). It was expected that erlotinib
pharmacokinetics would show similar traits given its similarities to
gefitinib. This was confirmed in studies showing a 24% reduction in the
clearance of erlotinib in patients with at least 1 Q141K allele (Thomas
et al., 2009; Fukudo et al., 2013). For sunitinib, both homozygous and
heterozygous genotypes showed an increased dose-adjusted AUC
compared with wild type (Mizuno et al., 2012). Q141K showed an
association with sunitinib therapy-induced thrombocytopenia, but not
with early onset hematoxicity (Low et al., 2016; Kato et al., 2017).
Studies examining imatinib response are more conflicting, although

research appears to sway again toward increased accumulation in
Q141K carriers. The conflicting results are exemplified in the Gardner
et al. (2006) study, which found increased accumulation in vitro but not
in 16 heterozygous patients in vivo. Increased sensitivity to imatinib
(and dasatinib and nilotinib) in vitro in Q141K-expressing cells was also
shown by Skoglund et al. (2014). Several studies have found Q141K
showing no influence on imatinib concentration (Yamakawa et al., 2011;
Seong et al., 2013; Francis et al., 2015); however, other studies have
found 1.4-fold dose-adjusted trough concentration to be higher in
Q141K, along with reduced oral clearance and increased drug response
(Petain et al., 2008; Takahashi et al., 2010; Au et al., 2014; László et al.,
2016), and recent meta-analysis of 23 studies found that Q141K has a
significant effect on improved imatinib treatment in chronic myeloid
leukemia in Asian populations (Jiang et al., 2017). Currently, no
association has been found with ABCG2 polymorphisms and telatinib/
danusertib pharmacokinetics (Steeghs et al., 2011a,b). Along with the
changes in TKI disposition in ABCG2 polymorphisms, TKIs have been
shown to inhibit ABCG2, with a potential role in drug-drug interactions,
as discussed by Mao and Unadkat (2015).
Other Anticancer Agents. It would be expected that loss-of-function

polymorphisms such as Q141K would increase methotrexate toxicity
since inhibition of ABCG2 has consistently been shown to increase
methotrexate AUC (Vlaming et al., 2011; Suthandiram et al., 2014;
Gervasini et al., 2017). However, no patient studies have shown this link,
with several studies showing no effect of Q141K on plasma concentra-
tions and therapy response (El Mesallamy et al., 2014). The anthracy-
cline daunorubicin was one of the first ABCG2 substrates to be
discovered, using MDR breast cancer cell lines. In Q141K-expressing
cell lines, daunorubicin and doxorubicin were found to show increased
accumulation compared with wild type (Tamura et al., 2007b), but worse
outcomes were shown in Q141K acute myeloid leukemia patients
treated with idarubicin (Tiribelli et al., 2013). In addition, the presence
of the 421C allele was indicative of a weaker treatment response to
anthracyclines in a Kurdish population (Ghafouri et al., 2016). The same
study showed Q141K produced a weaker response to the taxane paclitaxel
(Ghafouri et al., 2016), although Q141K patients were associated with
longer progression-free survival when treated with paclitaxel and platinum
therapy in a study on ovarian cancer patients (Tian et al., 2012). Another
taxane, docetaxel, was shown in a recent study to have reduced resistance in
Q141K carriers compared with wild type (Sobek et al., 2017), despite
Q141K previously having been shown to have no influence on docetaxel
disposition (Baker et al., 2009; Chew et al., 2011). These conflicting
findings, particularly for taxanes, reiterate the need for further investigation
into the pharmacokinetics of anticancer agents in ABCG2 variants.
Statins. The effects of Q141K on the family of statins have been

extensively researched, with the majority of statins tested (notable
exceptions being pitavastatin and pravastatin) (Ieiri et al., 2007;
Keskitalo et al., 2009b; Oh et al., 2013; Zhou et al., 2013c) showing
altered pharmacokinetics in individuals bearing the C421A allele.

Fig. 3. Structural localization of SNPs within ABCG2. (A) The structure of ABCG2
(Taylor et al., 2017) is shown in ribbon format with the location of SNPs indicated
by the blue coloring of residues. (B and C) An expanded view of the NBD:MSD
interface is shown to highlight the interaction between Q141 and K382/R383 in
wild-type ABCG2 (B) that is destabilized by the introduction of the Q141K SNP
(C). (D) The ABCG2 drug binding cavity [“cavity 1” in the terminology of Taylor
et al. (2017)] is shown with residues in pink proposed to interact with substrates. Of
the known SNPs (cyan) only F431 shown in stick format localizes to this cavity.
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Rosuvastatin pharmacokinetics have been consistently shown to be
influenced by Q141K, with many studies linking the polymorphism
to an increase in plasma AUC. Both the 421CA and AA genotypes
show significant increases, with AA individuals showing 135%
higher maximum plasma concentration and 140% higher AUC, thus
creating drug efficacy at lower doses of rosuvastatin in individuals
with the Q141K polymorphism (Zhang et al., 2006; Keskitalo et al.,
2009b; Tomlinson et al., 2010; Lee et al., 2013; Zhou et al., 2013a;
Birmingham et al., 2015; Liu et al., 2016). In addition, atorvastatin
shows a 46% increased plasma AUC in the 421AA genotype, although
there is limited evidence as to the effects of CA (Keskitalo et al., 2009b;
Birmingham et al., 2015). Simvastatin acid has been shown to have a
significantly increased concentration in Q141K patients in studies by
Birmingham et al. (2015) and Choi et al. (2015), but evidence for effects
on the prodrug simvastatin lactone is more equivocal (Keskitalo et al.,
2009a; Birmingham et al., 2015). Research into fluvastatin has also
shown varying results. Zhou et al. (2013b) found that neither Q141K nor
V12M influenced pharmacokinetics; however, Keskitalo et al. (2009a)
found a significant increase in AUC in 421AA individuals. Despite this
apparently clear picture of ABCG2:statin interaction there are still
ambiguities to resolve. Notably, while Q141K has been shown to result
in increased plasma concentration of atorvastatin and rosuvastatin, there
was no effect on the elimination half-lives. This means the altered
pharmacokinetics is due to tissue-specific ABCG2:statin interactions,
i.e., causing increased absorption into the blood rather than changes in
biliary excretion (Li and Barton, 2018).
Direct Oral Anticoagulants. Recent research into anticoagulants has

found that dabigatran etexilate, rivaroxaban, edoxaban, and apixaban are
substrates of ABCG2 (Gong and Kim, 2013; Gong et al., 2013; Mueck
et al., 2013; Zhang et al., 2013; Hodin et al., 2018). It was hypothesized
that these drugs may be influenced by loss-of-function polymorphisms
(e.g., Q141K) and drug-drug interactions, possibly risking patient safety
and impacting drug action. Apixabanwas recently shown to have a 1.5-fold
higher clearance rate in WT or heterozygous genotype compared with the
421AA genotype (Ueshima et al., 2017), supporting the need for further
studies to determine whether patients with C421A alleles are at greater risk
of bleeding. This is an important field of potential study, especially due to
the significant risks in under- or overdosing of anticoagulants, and the lack
of antidotes for some direct oral anticoagulants.
Anti-Human Immunodeficiency Virus Medications. Several anti-

human immunodeficiency virus medications have been shown to act as
ABCG2 substrates. Disposition of both lamivudine and nelfinavir seem
to be unaffected by Q141K (Colombo et al., 2005; Kim et al., 2007). On
the other hand, dolutegravir showed a significantly increased peak
plasma concentration in the 421AA genotype compared with CC and
CA. It was hypothesized this was due to reduced ABCG2 expression in
the small intestine, which resulted in increased dolutegravir absorption
(Tsuchiya et al., 2017). Increased drug concentration in Q141K patients
has also been found for raltegravir (Tsuchiya et al., 2016).
Disease-Modifying Antirheumatic Drugs. Leflunomide, used in

the treatment of rheumatoid arthritis, produces the active metabolite
teriflunomide/A771726. A 70% increase in maximal serum con-
centration and 40% increase in AUC of teriflunomide have been
shown in Q141K as a result of reduced ABCG2 activity (Kim et al.,
2011; Wiese et al., 2012). The effects of Q141K on SASP have been
extensively researched, but data remain conflicting. Studies by
Urquhart et al. (2008), Ieiri et al. (2008), and Gotanda et al. (2015)
all showed a significant increase in the AUC of SASP for CA/AA
genotypes, but this was not found in the Adkison et al. (2010) study.
The increase in drug concentration may be caused by increased
SASP absorption in the small intestine or decreased clearance in the
liver (Ieiri et al., 2008).

Other Drugs. A significant effect on the in vitro accumulation of
diabetic medication glyburide/glibenclamide in cells expressing Q141K
has been shown by Pollex et al. (2010), with possible importance in the
placenta during pregnancy. Increased glyburide accumulation in
Q141K-expressing cells was also found by Bircsak et al. (2016).
Q141K has also recently been shown to influence the exposure of
clozapine, an antipsychotic medication (Bircsak et al., 2016). The
dispositions of the immunosuppressants tacrolimus and mizoribine have
shown no change in Q141K (Fukao et al., 2011; Ogasawara et al., 2013),
although mycophenolic acid showed more mixed results (Miura et al.,
2008; Geng et al., 2012). There are also multiple drugs that have been
studied with respect to Q141K, which have thus far shown no evidence
of pharmacokinetic effects. No effects have been found thus far for the
angiotensin II inhibitors telmisartan and olmesartan (Yamada et al.,
2011; Kim et al., 2012; Chen et al., 2013) or for nitrofurantoin, an
antibiotic used in bladder infections (Adkison et al., 2008; Huang et al.,
2012). However, the wide variety of drugs potentially influenced by
Q141K highlights the importance of testing new drugs for interactions
with this specific polymorphism.
“Rescuing” the Mis-Trafficked Q141K Isoform. The pharmaco-

logical modulation of misfolded ABC transporters has been intensively
studied in the case of ABCC7/CFTR (De Boeck et al., 2014; Vauthier
et al., 2017). The F508del variant of CFTR, which is found in
approximately 70% of cystic fibrosis patients, is located in a structurally
equivalent position to Q141K, which has prompted significant research
into the use of pharmacological chaperones to increase Q141K protein
expression at the cell membrane. A number of small molecules were
discovered by Woodward et al. (2013) to increase the expression of
Q141K ABCG2 within the membrane including 4-phenybutyrate (a
histone deacetylase inhibitor) and the CFTR corrector VRT-325. In the
case of VRT-325, it was found to restore function (uric acid transport) of
Q141K-expressing cells, showing its potential benefits in gout treat-
ment. Other histone deacetylase inhibitors, such as romidepsin, have
been shown to rescue Q141K ABCG2, causing restored ABCG2
expression in the membrane and increased ABCG2 function (Basseville
et al., 2012). The potential for ABCG2 modulation in gout therapy is in its
infancy but there is promise in this area.

Less Well-Studied SNPs in the NBD

The T153M (458 C.T; rs753759474) polymorphism was shown to
cause decreased ABCG2 expression, resulting in decreased resistance to
SN-38 (irinotecan), due to reduced efflux activity (Mizuarai et al., 2004;
Yoshioka et al., 2007; Stiburkova et al., 2017). A recent study linked
T153M to gout induction, along with the nearby polymorphism R147W.
It was hypothesized that these effects may be due to disruption in ATP
binding (Stiburkova et al., 2017); however, no in vitro examination of
the effect of this SNP on ATP binding has been performed. Indeed,
examination of the structure of ABCG2 indicates that both T153M and
R147W are positioned close to the NBD:TM domain interface (Fig. 3B).
Similar to Q141K, these residues may either disturb the folding of the
protein or the allosteric communication of ATP hydrolysis with drug
binding and transport. Furthermore, in vitro examination of these SNPs
is certainly warranted since it may shed light on the mechanism of the
transporter.
Close to the Walker B catalytic glutamate residue (E211 in human

ABCG2) there are two SNPs, I206L (rs12721643) and F208S (rs1061018)
(Zamber et al., 2003). Their location in the Walker B region means that
impacts on ATP binding are expected, particularly for the drastic change
from Phe to Ser in the F208S variant. In vitro experiments on cells
expressing the I206L variant indicated that there was significantly lower
ABCG2 expression compared with wild type (Vethanayagam et al.,
2005), which is paralleled by other mutations in neighboring residues
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(Cui et al., 2001)). F208S (623 T.C) expression is also reduced, and
furthermore the mutated protein is not localized to the cell surface
membrane. Concomitantly, F208S was found to show no resistance to
SN-38 (irinotecan) and mitoxantrone in studies by Yoshioka et al.
(2007) and Tamura (2007b), and is defective in porphyrin transport. This
makes it likely to be a loss-of-function polymorphism, a view reinforced
by transport studies of TKI in cells expressing this variant (Skoglund
et al., 2014). For both I206L and F208S, to date, there are no studies
regarding the effects of this SNP in patients.
Polymorphism rs3116448, which results in S248P (742 T.C), shows

impaired efflux function and defective porphyrin transport compared
with wild-type protein (Tamura et al., 2006; Deppe et al., 2014), despite
showing similar expression at the plasma membrane. S248P has been
shown to reduce drug resistance for SN-38 and mitoxantrone compared
with wild type (Tamura et al., 2007b). This is a result of impaired
transport, which will result in an increased concentration within target
cells. Structurally, S248 is located C-terminally to a conserved NBD
motif—the histidine switch region (Mao and Unadkat, 2015)—which is
known to be critical in ATP hydrolysis; therefore, a dramatic effect on
protein function is expected here.
Finally, in a loop toward the end of theNBD, the SNP P269S (805C.

T) is located close to the linker region; it is found in Korean and
Vietnamese populations at a frequency of 0.2% (Lee et al., 2007). The
activity of P269S ABCG2 was decreased modestly compared with wild
type, despite similar protein expression levels, for a range of drugs
including prazosin, estrone-3-sulfate, and mitoxantrone (Kondo et al.,
2004; Lee et al., 2007; Higashino et al., 2017). Similarly, there is no
effect of this SNP on urate transport, suggesting P269S is not clinically
relevant in gout; the clinical significance of this SNP on pharmacoki-
netics remains to be determined.

Polymorphisms in the Linker Region

The recent structural advances for ABCG2 now mean that interpre-
tations of linker region SNPs will be more informed (Taylor et al., 2017).
Only one SNP in the linker region of ABCG2 has been described in any
detail. D296H (886 G.C) was originally identified by Polgar et al.
(2008), and was shown to reduce ABCG2 expression and increase the
toxicity of several TKIs (Skoglund et al., 2014). This can be rationalized
by inspection of the structure of ABCG2, which shows D296 to be
located at an NBD:NBD interaction site. It is feasible that disruption of
the NBD:NBD interface by this SNP could have dramatic effects on the
transporter’s ability to hydrolyze ATP, although this remains to be seen.

Polymorphisms in the MSD

Themembrane spanning region ofABCG2, like otherABC transporters,
is the site at which transported substrates interact (see Fig. 3D for the
proposed drug binding site in ABCG2). The structural basis for
multidrug transport by ABCG2 is not fully understood but is believed
to be underpinned bymultiple pharmacologically distinct and potentially
spatially distinct drug interaction sites (Clark et al., 2006; Cox et al.,
2018). A loop between two of the helices that comprise the MSD is also
the location of the single N-linked glycosylation site in the transporter,
full maturation of which is necessary for ABCG2 stability (Nakagawa
et al., 2009). It might, therefore, be expected that mutations in the MSD
would impact drug specificity as well as protein stability.
F431L. F431L (1291 T.C) is found within the TM2 segment of the

MSD. Studies have found that ABCG2 expression at the cell surface
membrane was not affected by the polymorphism, although there was
loss of function (Yoshioka et al., 2007; Deppe et al., 2014; Sjöstedt et al.,
2017). This loss of function results in impaired transport of porphyrins
(Tamura et al., 2007b), decreased resistance to SN-38 and mitoxantrone

compared with wild type (Tamura et al., 2007a), and differences in
response to TKIs and ABCG2-specific inhibitors (Yoshioka et al., 2007;
Kawahara et al., 2010). This may result in an increased risk of
hypersensitivity to certain anticancer agents, especially methotrex-
ate, where transport is completely abolished. Yoshioka et al. (2007)
hypothesized the F431 residue may be important in substrate recogni-
tion, and inspection of the structure of ABCG2 (Fig. 3D) shows the
location of this residue close to a proposed drug-binding pocket (Taylor
et al., 2017); the recent determination of the structure of ABCG2 with a
bound inhibitor confirms the importance of this residue in transporter
pharmacology (Jackson et al., 2018).
S441N (rs758900849). The S441N polymorphism (1322 G.A), also

in TM2, has been shown to cause instability in the protein, presumably
by disrupting the TM helical fold, despite the relatively conservative nature
of the substitution. This results in enhanced proteasomal degradation of the
S441N variant protein, and a lower overall protein expression level within
the plasma membrane (Nakagawa et al., 2008). The lower protein
expression in S441N appears to completely eliminate the transport
function of ABCG2 in multiple studies (Tamura et al., 2006, 2007a,b;
Sjöstedt et al., 2017) in various different cell-based systems; these
describe reductions in and abolition of transport of urate, porphyrins,
SN-38, and mitoxantrone. How this translates to effects on ABCG2 in
individuals with either GA or AA haplotypes is unclear. Notably, the
polymorphism S441N is close to numerous residues identified in
structural and functional work on ABCG2 as being important for drug
binding and transport. It lies adjacent to S440, shown to be critical in the
transport of mitoxantrone and pheophorbide A (Cox et al., 2018), and is
located at a site where multiple structural and molecular docking studies
predict drugs may bind (László et al., 2016; Taylor et al., 2017; Cox
et al., 2018).
F489L (rs192169063). F489L (1465 T.C) is found in the TM3

segment of the MSD, producing ABCG2with impaired functioning, but
with similar expression levels in the membrane (Sjöstedt et al., 2017).
This impaired transport has been found to be around 10% of wild type,
with F489L ABCG2 shown to be unable to transport methotrexate
(Tamura et al., 2006). Although not the exact residue change seen in the
SNP, it is interesting that Cox et al. (2018) have also expressed an F489A
variant, which showed a contribution to a drug binding site in molecular
docking studies and reduced drug export function (reduced pheophorbide
A transport), but with no effect on protein expression. In contrast, a
study by Deppe et al (2014) found that F498L reduced levels of ABCG2,
which was reversed by proteasome inhibition, suggesting a protein
processing defect.
N590Y (rs34264773). N590Y (1768 A.T) is located in the extracel-

lular loop between TM5c and TM6a and was found at a frequency of 1%
in a Caucasian population (Zamber et al., 2003). Results on this
polymorphism are limited to in vitro studies that do not show strong
agreement. Vethanayagam et al. (2005) found that N590Y increased the
expression of ABCG2 within the membrane, but reduced drug transport
and resistance to mitoxantrone and topotecan to just 30% of wild type.
This was not supported by Yoshioka et al. (2007), who showed
comparable expression to wild type and no change in SN-38 pharma-
cokinetics. Research on the pharmacokinetics of F489L and N590Y is
limited and conflicting, thus no reliable judgement can be made on their
effects. It is interesting to note that the side chain of N590 is in very close
proximity to N596, which is the site of glycosylation in ABCG2; therefore,
an effect of this SNP on processing andmaturation of the transporter would
not be unexpected.
D620N (rs34783571). The D620N polymorphism (1858 G.A) is

also located at the very extracellular end of the TM6a helix and its side
chain interacts with the polar head group region of the lipid bilayer
(Taylor et al., 2017). The impact of the polymorphism on protein
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expression again shows contradictory results. Vethanayagam et al. (2005)
showed 240% increased ABCG2 expression compared with wild type,
similar to N590Y. This study also showed that the mutated pump had
50% of the efflux activity of the wild-type pump, with a concomitant
50% decrease inmethotrexate resistance, although there was no effect on
mitoxantrone or topotecan resistance (Vethanayagam et al., 2005). On
the other hand, another study found a decrease in ABCG2 expression
(Yoshioka et al., 2007) and reduced resistance to SN-38 (Yoshioka et al.,
2007), while a further report indicated no effect on efflux activity
(Morisaki et al., 2005). Reduced excretion of urate in the kidney may
result in a possibly damaging effect of D620N in gout (Stiburkova et al.,
2017), although sample sizes are not currently high enough to provide
firm evidence of this.

Polymorphisms in Noncoding Regions

Mutations in the introns may affect ABCG2 expression and function
via effects on mRNA splicing or RNA stability, although the exact
mechanisms of many such polymorphisms remain unclear. Both

16702 C.T and 12283 T.C have been shown to increase ABCG2
expression in liver samples (Poonkuzhali et al., 2008), with 16702 C.T
showing some association with skin toxicity and rash in erlotinib
therapy. These effects of 16702 C.T are likely caused by the gain of a
GATA4 transcription factor binding site (Rudin et al., 2008). Con-
versely, 1143 C.T was shown to lower ABCG2 expression in the same
study with 1143CT/TT carriers showing an increased concentration
response to erlotinib (Poonkuzhali et al., 2008; Rudin et al., 2008), and
CT carriers have shown a minor link to sorafenib response (Tandia et al.,
2017). Another study looked at the effects of intronic polymorphisms on
methotrexate therapy. Two polymorphisms were identified with an
enhanced response: 5566 C.T in intron 2 and 3531 G.C in intron 9.
The 18271 G.A (rs1564481) polymorphism was shown to correlate
with the pharmacokinetics of, and improved response to, therapy with
flavopiridol, a CDK9 inhibitor used in the treatment of acute myeloid
leukemia (Ni et al., 2010). No effect on flavopiridol pharmacokinetics
was found for other intron polymorphisms, 152 G.A, 10130 A.G,
14952 G.T, and 18271 G.A.

TABLE 3

Summary of the effects of less-well studied ABCG2 SNPs on expression and function

Base Change
Amino
Acid

Change
Location Test Systems (Cell Lines) Effects on ABCG2 Effects on Drug Transport Reference

458 C.T T153M NBD Cancer cell lines HCT116;
blood cells from patients;
murine fibroblast PA317
cells

Decreased expression;
impaired efflux activity;
possible disruption to ATP
binding

Lower SN-38 resistance;
defective urate transport

Mizuarai et al. (2004);
Yoshioka et al. (2007);
Stiburkova et al. (2017)

616 A.C I206L NBD HEK293 cells; murine
fibroblast PA317 cells

Decreased expression; no
effect on efflux

No effects shown Vethanayagam et al. (2005);
Yoshioka et al. (2007)

623 T.C F208S NBD Blood leukocytes; chronic
myeloid leukemia K562
cells

Decreased expression;
impaired efflux activity;
possible disruption to ATP
binding

Sensitivity to SN-38 and
mitoxantrone; defective
porphyrin and TKI
transport

Itoda et al. (2003); Skoglund
et al. (2014)

742 T.C S248P Linker HEK293-Tet-On-cells; Flp-
In293 cells; Sf9 cells

Similar expression; impaired
efflux activity

Lower SN-38 and
mitoxantrone resistance;
defective porphyrin
transport

Tamura et al. (2006), (2007b);
Deppe et al. (2014)

805 C.T P269S Linker HEK cells; cellular
localization monitored in
LLC-PK1 cells; Sf9 cells

Similar expression; impaired
efflux activity

No effect on urate transport Kondo et al. (2004), Lee et al.
(2007), Higashino et al.
(2017)

886 G.C D296H Linker Chronic myeloid leukemia
K562 cells

Decreased expression Increased sensitivity to TKIs Skoglund et al. (2014)

1291 T.C F431L TMH2 HEK293-Tet-On-cells;
chronic myeloid leukemia
K562 cells; Flp-In293 cells;
Sf9 cells; murine fibroblast
PA317 cells

Similar expression; impaired
efflux activity or drug
substrate binding

Increase sensitivity to SN-38,
mitoxantrone, and
methotrexate; defective
porphyrin transport

Tamura et al. (2006), (2007b);
Yoshioka et al. (2007);
Kawahara et al. (2010);
Deppe et al. (2014)

1322 G.A S441N TMH2 Cellular localization
monitored in LLC-PK1
cells; Flp-In293 cells; Sf9
cells; HEK283 cells

Decreased expression;
impaired or abrogated
efflux activity; change in
substrate specificity

Sensitivity to SN-38 and
mitoxantrone; defective
porphyrin transport;
defective urate transport

Kondo et al. (2004); Tamura
et al. (2006), (2007b);
Nakagawa et al. (2008);
Sjöstedt et al. (2017)

1465 T.C F489L TMH3 HEK293 Tet-On-cells;
HEK293 cells; Sf9 cells;
Flp-In293 cells

Similar or reduced expression
level; impaired efflux

Sensitivity to SN-38,
mitoxantrone, and
methotrexate

Tamura et al. (2006), (2007b);
Deppe et al. (2014);
Sjöstedt et al. (2017)

1574 T.G L525R TMH4 Sf9 cells; HEK283 cells;
chronic myeloid leukemia
K562 cells

Decreased expression level; Sensitivity to TKIs; proximal
residue M523 is involved in
drug recognition

Skoglund et al. (2014);
Sjöstedt et al. (2017)

1582 G.A A528T TMH4 Chronic myeloid leukemia
K562 cells

Similar expression level to
WT; increased efflux
activity

No effects to date Skoglund et al. (2014)

1768 A.T N590Y TMH5-6 loop HEK293 cells; murine
fibroblast PA317 cells;
DNA isolation from liver
and intestinal donors

Similar or increased
expression

Increased sensitivity to
mitoxantrone and
topotecan; no change in
SN-38 pharmacokinetics

Zamber et al. (2003);
Vethanayagam et al. (2005);
Yoshioka et al. (2007)

1858 G.A D620N TMH5-6 loop HEK293 cells; chronic
myeloid leukemia K562
cells; blood cells; Sf9 cells

Ambiguous; documented
increases and decreases in
both expression and activity

Ambiguous; documented
increased sensitivity or no
change in sensitivity;
defective urate transport?

Morisaki et al. (2005);
Vethanayagam et al. (2005);
Tamura et al. (2006);
Skoglund et al. (2014);
Stiburkova et al. (2017)

HEK293, human embryonic kidney 293.
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Promoter mutations may affect expression via effects on the
transcription of the ABCG2 gene. The 215622 C.T polymorphism
has been shown to lower ABCG2 protein expression in tissue
(Poonkuzhali et al., 2008). Both heterozygous and homozygous
haplotypes result in 40%–50% increases in maximum concentration
in patients treated with erlotinib, along with increased incidence of
side effects such as diarrhea (Rudin et al., 2008). An increased risk
of side effects was also shown in gefitinib therapy, although Lemos
et al. (2011) did not find any link between the TT genotype and
therapy outcomes. Conversely, the 215994 C.T (rs7699188) poly-
morphism significantly increases ABCG2 expression. These effects
are possibly due to the gain of a hepatocyte nuclear factor 4 binding
site, a transcription factor that may be involved in ABCG2 expression.
The increased expression as a result of this polymorphism has been
shown to increase the clearance of oral imatinib in vivo (Poonkuzhali
et al., 2008).

Junior Blood Group

As well as its influence on pharmacokinetics, ABCG2 has recently
been explained as having a key role in the Junior (Jr) blood group
system, which is especially common in Asian populations. Several
millions of people are predicted to not express ABCG2, producing the
Jr(a2) blood group, because the Jr antigen is within the ABCG2
protein (Saison et al., 2012; Zelinski et al., 2012). Antibodies to the
Jr(a2) blood group may result in blood transfusion reactions, but do
not commonly cause severe hemolytic disease of the newborn,
despite some reports of this (Zelinski et al., 2012). The Jr(a2) blood
group is induced by ABCG2 null alleles, which lead to insertion of a
premature stop codon, such as the Q126X (376 C.T) polymorphism
(Honjo et al., 2002; Zelinski et al., 2012). These individuals have no
ABCG2 expression on the surface of their erythrocytes. Homozy-
gous Q126X was detected in 80% of Jr(a2) blood samples in a recent
study in a Japanese population (Tanaka et al., 2018). Saison et al.
(2012) also suggested that the R236X polymorphism (706 C.T) may
be the basis of the Jr(a2) blood type in Romani Gypsy diaspora
communities of Southwestern Europe, and a homozygous R246X
(736 C.T) variant has been found, resulting in Jr(a2) erythrocytes
in two Caucasian individuals. Heterozygous R246Xwas shown to lower
ABCG2 expression approximately 50% in vivo during flow cytometry
analysis of erythrocytes (Kasza et al., 2012). Along with these studies, it
is predicted that the E334X variant also produces the Jr(a2) blood group
(Zelinski et al., 2012). Recently, an increasing catalog of alleles has been
linked to the Jr blood group, with studies reporting R113X, G262X,
Q531X, and S340del as mutations causing Jr(a2) (Zelinski et al., 2012).
It is as yet unknown whether individuals with the Jr(a2) blood group
have altered pharmacokinetics of drugs, although they would be
expected to have similar pharmacokinetics to those detailed in the
previous section on Q126X. An interesting line of research would be to
investigate the differences in drug disposition and treatment outcomes in
populations with/without the Jr(a2) group.

Perspectives for Future Research

The effects of the Q141K polymorphism are well researched, with a
variety of substrate drugs being shown to have altered pharmacokinetics.
These effects are likely caused by the decreased ABCG2 expression
in the membrane in the various ABCG2 sites, a result of increased
instability and degradation of this isoform. The influence of Q141K on
pharmacokinetics may be a result of increased oral availability (e.g., due
to reduced excretion in the small intestine), decreased efflux of drugs
from the target cells, or decreased transport across barriers (e.g., the
blood-brain barrier).

Summarizing the effects of the less-common polymorphisms in the
NBD and polymorphisms in the MSD (see Table 3) shows varied
conclusions, with polymorphisms found to increase, decrease, or have
no change on levels of ABCG2 expression in vitro; however, there is
limited research into their effects on drug therapy.More research into the
in vivo effects of these polymorphisms on ABCG2 expression and drug
efficacy is required before any definitive conclusions can be drawn. An
ideal outcome of research into the ABCG2 polymorphisms would be
to establish a grouping system for polymorphisms based on their
characteristics of protein expression, efflux activity, and substrate-
specific effects. One grouping method was presented previously,
based upon protein expression, transport activity, drug resistance, and
prazosin-stimulated ATPase activity (Tamura et al., 2007a). Based on
the accumulation of limited research into rarer polymorphisms, we
propose an updated six-group system based on ABCG2 expression and
effects on activity or resistance (Table 4). However, to substantiate and
validate this system requires much more work on the rarer SNPs.
Where will such information come from? One novel method involves

the use of antibody-based flow cytometry analysis to quantify the levels of
ABCG2 in erythrocytes via a blood sample, coupledwith genomic analysis
of theDNA in the same sample. The use of blood samples could be a well-
tolerated method of analyzing ABCG2 levels since it is noninvasive
and quantifiable with good anti-ABCG2 antibodies. This method
has been used to describe significant decreases in protein expression
in heterozygous Q141K and R236X carriers (Kasza et al., 2012). This
proved the method could be successful in showing the varying tissue
levels of ABCG2 for differing genotypes. An expansion of this method
to discover the in vivo expression levels of the many other natural
polymorphisms detailed in this review would be an ideal next step in
research, since it would remove the more subjective interpretation of cell
line studies. Complementary functional studies in cell lines do have an
important role to play as long as changes in transport are correlated with
the ABCG2 expression level to ensure that an accurate picture of a
SNP’s effect on drug transport is obtained. One additional question that
is not often discussed in the literature is the effect of heterozygous alleles
in the final assembled ABCG2 dimer. Specifically, in a heterozygous
individual there is a possibility that following translation and trafficking
ABCG2 dimers are present in three forms: WT-SNP, SNP-SNP, or
WT-WT. Given that translation occurs through the action of polyribo-
somes on the same mRNA, it seems feasible that SNP-SNP ABCG2
dimers andWT-WTdimers would occur rather than “mixed dimers,” but
this remains to be determined. Finally, better structural data now set the
scene for molecular docking approaches that should be able to
rationalize effects in patients and enable better predictions regarding
possible drug interactions with this important MDR pump.
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TABLE 4

Potential categorization of ABCG2 SNPs

Group Example SNP Cell Surface Expression Drug Transport
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3b 215994 C.T Increased Elevated
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