Bacterial Outer Membrane Vesicles from Dextran Sulfate Sodium–Induced Colitis Differentially Regulate Intestinal UDP-Glucuronosyltransferase 1A1 Partially Through Toll-Like Receptor 4/Mitogen-Activated Protein Kinase/Phosphatidylinositol 3-Kinase Pathway

Xue-Jiao Gao, Ting Li, Bin Wei, Zhi-Xiang Yan, Nan Hu, Yan-Juan Huang, Bei-Lei Han, Tai-Seng Wai, Wei Yang, and Ru Yan

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China

Received October 24, 2017; accepted January 3, 2018

Abstract

UDP-glucuronosyltransferase 1A1 (UGT1A1) constitutes an important part of intestinal epithelial barrier and catalyzes glucuronidation of many endogenous compounds and drugs. Downregulation of UGT1A1 in inflammation has been reported, whereas the association with gut dysbiosis is poorly defined. This study verified the involvement of gut microbiota in intestinal UGT1A1 regulation using dextran sulfate sodium (DSS)–induced rat colitis model plus fecal microbiota transplantation (FMT). Generally, both DSS induction and colitis-to-normal FMT suppressed mRNA and protein expressions of UGT1A1 and nuclear xenobiotic receptors (NRs) in colon, but enhanced mRNA and decreased protein of rat UGT1A1/rat NRs in small intestine. Normal-to-colitis FMT alleviated DSS-induced changes. Bacterial outer membrane vesicles (OMVs) from colitis rats and rats receiving colitis feces reduced both mRNA and protein of human UGT1A1 (hUGT1A1)/human NRs (hNRs) in Caco-2 cells. Interestingly, using deoxycholate to reduce lipopolysaccharide, normal OMVs upregulated hUGT1A1/hNRs, whereas colitis OMVs decreased, indicating the involvement of other OMVs components in UGT1A1 regulation. The 10- to 50-kDa fractions from both normal and colitis OMVs downregulated hUGT1A1, human PXR, and human PPAR-γ, whereas >50-kDa fractions from normal rats upregulated hUGT1A1 and human CAR. Additionally, the conditioned medium from OMVs-stimulated rat primary macrophages also reduced hUGT1A1/hNRs expression. Both Toll-like receptor (TLR2) and TLR4 were activated by DSS, colitis-to-normal FMT, and the opposite, whereas only TLR4 was increased in OMVs-treated cells. TLR4 small interfering RNA blocked hUGT1A1/hNRs downregulation and phosphorylation evoked by bacterial OMVs. Taken together, this study demonstrated that gut microbiota regulate intestinal UGT1A1 partially through secreting OMVs, which interact with intestinal epithelial cells directly or via activating macrophages.

Introduction

UDP-glucuronosyltransferase 1A1 (UGT1A1), one of the major intestinal drug-metabolizing enzymes, catalyzes glucuronidation of many potentially harmful compounds and drugs. Inhibition of UGT1A1 may bring increased risks of drug–drug interactions and cause bilirubin-related diseases (Strauss et al., 2006). Existing data indicate an involvement of gut microbiota in regulating UGT1A1 or its upstream regulators, the nuclear xenobiotic receptors (NRs) pregnane X receptor (PXR), constitutive androstane/active receptor (CAR), and peroxisome proliferator activation receptors (PPARs). Exposure to lipopolysaccharide (LPS) or Clostridium rodentium infection downregulated hepatic UGT1A1 in mice (Richardson et al., 2006). Indole 3-proponic acid produced by commensal Clostridium sporogenes promoted PXR mRNA expression in Nr1i2−/−/Tlr4−/− mice (Venkatesh et al., 2014). However, the contribution of gut microbiota community as a whole to UGT1A1 expression is not well understood.

ABBREVIATIONS: BCA, bicinchoninic acid; CAR, constitutive androstane/active receptor; CM, conditioned medium; DAI, disease activity index; DMEM, Dulbecco’s modified Eagle medium; DOC, deoxycholate; DSS, dextran sulfate sodium; ELISA, enzyme-linked immunosorbent assay; ERK, extracellular signal-regulated kinase; FMT, fecal microbiota transplantation; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; hCAR, human CAR; hNR, human NR; hPPAR, human PPAR; hPXR, human PXR; hUGT1A1, human UGT1A1; IECs, intestinal epithelial cells; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MCP, monocyte chemoattractant protein; MPO, myeloperoxidase; NC, negative control; NF-kB, nuclear factor-kB; NN, normal-to-normal FMT; NR, nuclear xenobiotic receptor; NU, colitis-to-normal FMT; OMVs, bacterial outer membrane vesicles; PBS, phosphate-buffered solution; PCR, polymerase chain reaction; PI3K, phosphatidylinositol 3-kinase; PPAR, peroxisome proliferator activation receptor; PVDF, polyvinylidene difluoride; PXR, pregnane X receptor; rCAR, rat CAR; rNR, rat NR; rPPAR, rat PPAR; rPXR, rat PXR; RT, reverse transcription; rUGT1A1, rat UGT1A1; siRNA, small interfering RNA; TGF, transforming growth factor; TLR, Toll-like receptor; TNF, tumor necrosis factor; UC, ulcerative colitis; UGT1A1, UDP-glucuronosyltransferase 1A1; UN, ; IECs, intestinal epithelial cells.
OMVs is more suitable than LPS as the materials to investigate Gram-negative bacteria than LPS in human whole blood (Mirlashari et al., 2001). Thus, inflammatory responses (Kaparakis-Liaskos and Ferrero, 2015) components (proteins, peptidoglycan, DNA, RNA, etc.) that can elicit localization of LPS (Vanaja et al., 2016). OMVs also contain other considered as the primary initiator for the pathogenic activities of OMVs (Beutler and Ritschel, 2003). LPS has been demonstrated to be involved in regulation of drug-metabolizing enzymes and transporters (Lu et al., 2008; Morgan et al., 2008). OMVs mediated the cytosolic localization of LPS (Vanaja et al., 2016). OMVs also contain other components (proteins, peptidoglycan, DNA, RNA, etc.) that can elicit inflammatory responses (Kaparakis-Liaskos and Ferrero, 2015). N. meningitidis OMVs showed more potent proinflammatory properties than LPS in human whole blood (Mirlashari et al., 2001). Thus, OMVs is more suitable than LPS as the materials to investigate Gram-negative bacteria–host interactions.

Diminished drug metabolic capability is associated with inflammation (Christensen and Herrmann, 2012). Recent advances indicate a key role for innate immunity in colonic inflammation (Marks and Segal, 2008). A large population of macrophages inhabits in intestine and steer innate immune response. Contacting with invading microorganisms leads to polarization of macrophages to M1 type (classically activated) or M2 type (alternatively activated), causing intestinal tissue damage, or maintains intestinal homeostasis by secreting pro- and anti-inflammatory cytokines, respectively (Nakata et al., 2013). A significant increase of M2 macrophages has been observed in UC patients (Cosin-Roger et al., 2013). In colitis animals, dextran sulfate sodium (DSS) drives the macrophage phenotype toward the M2 lineage (Kono et al., 2016). Macrophage colony-stimulating factor-deficient (op/op) mice, which are not able to develop mature macrophages, show decreased susceptibility to DSS-induced colitis (Ghia et al., 2008). Moreover, OMVs from N. meningitidis could promote macrophage polarization (Tavano et al., 2009). Macrophages sensing both LPS and protein components of Pseudomonas aeruginosa OMVs contribute to bacterial strain-specific inflammatory responses (Ellis et al., 2010). To our best knowledge, there is no report linking macrophage polarization with intestinal UGT1A1 regulation.

Toll-like receptors (TLRs) are key participants in innate immune responses. Among 11 human TLRs, TLR2 and TLR4 could recognize structurally diverse molecules from microbe. Bacterial OMVs could elicit biologic effects and inflammatory responses through activating TLR2 and/or TLR4. P. aeruginosa OMVs induced lung inflammation partly through activating both TLR2 and TLR4 (Park et al., 2013). Escherichia coli OMVs upregulated cell adhesion molecules in human microvascular endothelial cells via nuclear factor κB (NF-κB) and TLR4-dependent pathways (Kim et al., 2013).

Fecal microbiota transplantation (FMT) is arising as a promising therapeutic strategy for some gut dysbiosis-related diseases through transplanting healthy fecal bacteria into the gut lumen of a patient. It has been demonstrated successful in colitis and Clostridium difficile infection (Borody et al., 2013; van Nood et al., 2013). Transplantation of fecal microbiota, specific bacterial strains, or combinations is widely adopted in basic research to assess their roles in disease etiology, gene regulation, and drug interventions (Li et al., 2015).

In this study, the involvement of gut microbiota in intestinal UGT1A1 regulation was first examined by measuring intestinal UGT1A1 and major NRs in DSS-induced experimental colitis rat model and rats receiving FMT. The discriminative alterations of hUGT1A1 and human NRs (hNRs) in Caco-2 cells treated by OMVs (complete, different molecular-weight fractions, LPS-reducing) from normal and colitis rats, or conditioned medium from OMVs-stimulated macrophages, were characterized to delineate the contributions of OMVs and the role of macrophage polarization. At last, the involvement of TLR4/mitogen-activated protein kinase/phosphatidylinositol 3-kinase (PI3K) was assessed using TLR4 inhibition or TLR4 small interfering RNA (siRNA) transfection in Caco-2 cells.
Small intestines and colons were collected, flushed with ice-cold phosphate-buffered saline to move food particles, and then cut longitudinally into several segments. Intestinal and colonic mucosa was scraped from the smooth muscle using a glass microscope slide.

Assessment of Clinical Signs of Colitis. Disease activity index (DAI), histologic evaluation, cytokine determination, and myeloperoxidase (MPO) assay were carried out as described, respectively (Huang et al., 2015), with minor modifications. Each rat was given a DAI score for weight loss, stool consistency, and bloody stool. Colon segment (0.5 cm) from the distal end of the colon was rinsed and homogenized for 10 minutes, and pellets were washed with PBS. After incubation for 5 minutes, and pellets were washed with PBS, macrophages were cultured in serum-free DMEM and incubated for 5 minutes, and pellets were washed with PBS, macrophages were cultured in serum-free DMEM for another 6 hours. The culture medium was changed every 3 days until the cells were grown to confluence. Caco-2 cells were then challenged with CM for 24 hours or incubated in absence or presence of TAK-242 (1 μM) alone for 30 minutes, followed by 50 μM LPS OMVs, different fractions, or low-LPS OMVs for another 24 hours. At the end of the experiments, cells were harvested for PCR or Western blot analysis. Each assay was repeated at least three times.

Transfection of TLR4 siRNA into Caco-2 Cells. Caco-2 cells were grown to 40% confluence and transfected with TLR4 siRNA (5 nM) for 48 hours using Lipofectamine 2000 reagent following the manufacturer’s instructions. The positive control siRNA to human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was measured to monitor siRNA transfection efficiency by real-time RT-PCR. The siRNA negative control (NC) comprised of a 21-nt nontargeting sequence functions to distinguish sequence-specific silencing from nonspecific effects. After transfection, Caco-2 cells were treated with 50 μg/ml OMVs or low-LPS OMVs from normal and colitis rats for 24 hours, and cells were collected for Western blot or PCR assay in triplicates. TLR4, GAPDH, and NC siRNA sequences were as follows: TLR4-770, forward primer: 5'-GGTTCACACACAAACCAATT-3', reverse primer: 5'-AUUGGAUAAGGUUGGAGCATTT-3'; TLR4-931, forward primer: 5'-CGCAAGGCCCCCAUUACCUUTT-3', reverse primer: 5'-AAAGGCAUCAAGGGUACGTTT-3'; TLR4-1240, forward primer: 5'-CCCGGUGGAGGUGACUAAUTT-3', reverse primer: 5'-AAUGAACUAACUCAGCTT-3'; NC siRNA, forward primer: 5'-UUCUCGGAACGUUCACGTTT-3', reverse primer: 5'-AGGCAAGCACUGUUGGAGATTT-3', and GAPDH siRNA, forward primer: 5'-UGAACCUCUACACUUGGUUTT-3', reverse primer: 5'-AACAGGAGUGGGACGATT-3'.

Western Blot Analysis. Small intestinal or colonic mucosa or Caco-2 cells were washed twice with ice-cold PBS and then lysed in Western blot lysis buffer (50 mM Tris-HCl, pH 7.2, containing 1% sodium deoxycholate, 0.1% SDS, 0.15 mM NaCl, 1% Nonidet P-40, 1 mM sodium orthovanadate) at 4°C for 30 minutes. The supernatant was then obtained by centrifugation at 12,000 rpm for 20 minutes at 4°C, and the protein content was determined using BCA assay. The proteins were separated by 10% SDS-PAGE and transferred to PVDF membranes by semidry electrophoretic transfer. The PVDF membranes were then blocked with 5% skim milk in TBST buffer (5 mM Tris-HCl, pH 7.6, 136 mM NaCl, 0.05% Tween 20) overnight at 4°C, followed by incubating with primary antibody (1:1000 dilution in TBST) at 4°C overnight. The PVDF membrane was washed three times with TBST buffer and incubated with the secondary antibody horseradish peroxidase-labeled anti-rabbit or anti-mouse IgG (1:2000 dilution in TBST) at room temperature for 1 hour. The signals were detected by using enhanced chemiluminescence detection reagent and semiquantified by densitometry with Image-Plus software.

RT Quantitative PCR Assay. Small intestinal and colonic mucosa, Caco-2 cells, or macrophages were homogenized, and mRNA was extracted using TRIzol Plus. mRNA concentration was calculated from QuantFluor RNA System. To generate cDNA from mRNA template, 500 ng total mRNA was dissolved in 20 μl reaction system [1 μl Oligo(dt)18, 4 μl 5′ reaction buffer, 1 μl RNase inhibitor, 2 μl dNTP (10 mM), and 1 μl RT]. The mixture was degenerated at 42°C for 60 minutes and annealed at 70°C for 5 minutes. An aliquot of cDNA (4 μl RT product) was dissolved in 50 μl PCR mixture [26 μl 1× SYBR Green master mix, 1 μ l each primer (final concentration 0.2 μM), 18 μl sterile water]. The target gene primer sequences were provided in Supplemental Tables 1 and 2. The amplification profile consisted of an initial denaturation at 95°C for 30 seconds, 60 cycles of 95°C for 5 seconds, and then 60°C for 34 seconds. The fluorescence data were collected by ViaA7 quantitative PCR instrument at the end of the elongation step per each cycle. The PCR data were analyzed using the 2−ΔΔCt method to determine the fold changes of relative abundance to internal control gene β-actin.

Statistical Analysis. All data were expressed as the mean ± S.D. Significance of the differences between groups was determined by one-way analysis of variance with a Scheffe post hoc test using GraphPad Prism software. Differences were considered statistically significant when P < 0.05.

Results
Effect of DSS and Fecal Microbiota Transplantation on Rat Colitis. Seven-day DSS treatment decreased body weight with DAI increasing from day 1 to 7. DSS induction also caused colonic edema
and ulcer, shortening, and bleeding, leading to remarkable increase of the colon weight to length ratio in colitic rats. In addition, DSS induction significantly increased the activity of colonic MPO and enhanced the production of both proinflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-4 and IL-10) cytokines from day 3 to 7 (Supplemental Figs. 1 and 2).

FMT from Colitis to normal (NU) rats showed increased DAI from day 4 to 7, colonic edema, elevated MPO activity, and increased pro- and anti-inflammatory cytokine levels from day 3 to 7, although to much less extents than DSS induction. Although the opposite [normal to Colitis (UN)] significantly suppressed the increase of DAI from day 4 to 7 and colonic edema, shortening and bleeding, decreased MPO activity and alleviated the production of both pro- and anti-inflammatory cytokines in NU group (Supplemental Figs. 1 and 2). FMT from normal to normal (NN) rats showed insignificant changes on the above colitis measurements.

Overall, the tissue damage tended to the terminal colon and could be classified as mild to aggravated colitis (Supplemental Fig. 3). DSS induction caused the loss of intestinal crypts with goblet cells, tissue damage on the epithelial layer, and increase of leukocyte infiltration. The NU rats showed similar colonic damage, including increase of leukocyte infiltration and loss of intestinal crypts. FMT from UN rats suppressed the colonic damage induced by DSS. Normal-to-normal FMT showed no colonic damage. The results indicated that DSS-induced gut dysbiosis could elicit colitis-like symptoms that could be abrogated by transplantation of normal fecal microbiota.

mRNA and Protein Expressions of UGT1A1 and NRs along Small Intestine and Colon of Rats. As shown in Fig. 1A, 7-day DSS stimulation significantly increased mRNA expression of rat UGT1A1 (rUGT1A1) in small intestine of Colitis group. Correspondingly, DSS induction resulted in the upregulation of rat PXR (rPXR), rat CAR (rCAR), and rat PPAR (rPPAR)-γ in small intestine, whereas significant decreases of rPXR and rCAR in ileum were observed. Unlike the small intestine, colonic mRNA expression of UGT1A1 and NRs were all decreased in colitis rats.

Small intestinal and colonic mRNA expression of UGT1A1 and NRs were unaltered by transplantation of normal feces to normal rats (NN group) (Fig. 1A). Colitis-to-normal FMT (NU group) unaltered small intestinal UGT1A1 expression; however, it caused more severe damage in colon, leading to diminished mRNA expression of rUGT1A1. The opposite (UN group) could partially diminish DSS-induced changes (upregulation in small intestine and downregulation in colon), although at less extents in most cases. Similarly, FMT from colitis rats to normal rats did not affect small intestinal NRs, except for an elevation of rPXR in duodenum, whereas the NRs expression in colon was reduced to an extent less than DSS insult. Oral administration of normal feces to colitis rats (UN group) could abrogate the changes of rPXR and rCAR in jejunum and ileum induced by DSS, but unaltered those in duodenum and colon. Neither the rPPAR-γ expression in both small intestine and colon. The results indicated that gut dysbiosis induced by DSS alters intestinal UGT1A1 and NRs expression at mRNA levels with general elevation in small intestine and reduction in colon.

When the protein expressions of UGT1A1 and NRs were measured, in contrast to the elevation at mRNA levels, DSS induction resulted in the downregulation of rUGT1A1 proteins in duodenum and colon (Fig. 1B). The downregulation of rUGT1A1 and rat NRs (rNRs) was also observed in the whole small intestine (data not shown). The protein expressions of rPXR, rCAR, and rPPAR-γ were changed by DSS in the same direction. rUGT1A1 and rNR proteins were unaltered in NN group. In contrast to the unaltered mRNA expression, significant reduction of the protein expressions of rUGT1A1 and rNRs in duodenum and colon was observed in NU group. Transplantation of normal feces to colitis rats (UN group) partly reversed DSS-induced rUGT1A1 and rNRs downregulation. The results indicated that DSS-induced gut dysbiosis can lead to the downregulation of intestinal UGT1A1 and NRs at protein levels that can be abolished by normal-to-colitis FMT.

mRNA and Protein Expressions of UGT1A1 and NRs in Caco-2 Cells Stimulated by Microbial OMVs and DOC-Treated OMVs. When the microbial OMVs obtained from fecal samples of each group were incubated with Caco-2 cells, both mRNA and protein expressions of hUGT1A1 were significantly decreased regardless of the origins of OMVs (Fig. 2). OMVs from colitis rats and normal rats receiving FMT from colitis rats reduced the expressions of hUGT1A1 in Caco-2 cells more significantly than those from their normal counterparts. FMT from normal to colitis rats diminished the effect of colitis OMVs on hUGT1A1 expression in Caco-2 cells. The expression of human PXR (hPXR), human CAR (hCAR), and human PPAR (hPPAR)-γ showed similar changes in Caco-2 cells, all downregulated by OMV stimulation. The inhibitory potency of OMVs on expressions of hUGT1A1 and hNRs is in the same descending order: Colitis > UN > NU > NN ≈ normal.

As shown in Supplemental Fig. 4, both normal and colitis OMVs contain LPS, with the LPS level in colitis OMVs significantly higher than that in normal OMVs. DOC treatment successfully reduced LPS from the OMV preparations of both groups to control level (control, 0.662 EU/ml; DOC-treated 0.571 EU/ml; DOC-treated colitis OMVs, 0.497 EU/ml).

When DOC-treated OMV preparations were incubated with Caco-2 cells, protein expressions of hUGT1A1 and hNRs were altered in opposite directions (Fig. 3A): upregulated by that of normal, whereas downregulated by that of colitis, which was less potent than respective complete OMVs. The results indicate that the components other than LPS contribute significantly to the regulatory effects of OMVs on intestinal UGT1A1 and NRs expression.

mRNA Expressions of UGT1A1 and NRs in Caco-2 Cells Treated with CM of OMVs-Stimulated Macrophages. As shown in Fig. 4A, OMVs pretreatment evoked inflammatory responses in macrophages, which resulted in overproduction of both M1-type (TNF-α, IL-1β, IL-6, MCP-1, IFN-γ) and M2-type (IL-4, IL-10, TGF-β1) cytokines and chemokines in CM, indicating activation of macrophages by bacterial OMVs. The effects of colitis OMVs were more potent than the normal OMVs.

Macrophages could steer intestinal immune responses through releasing cytokines and chemokines. To determine whether bacterial OMVs-stimulated macrophages contribute to regulation of UGTs/NRs in IECs, Caco-2 cells were treated with CM of macrophages stimulated with OMVs. Similar to the direct effects of OMVs, the mRNA expression of hUGT1A1 in Caco-2 cells was significantly suppressed accompanying downregulation of the hNRs (Fig. 4B). The CM obtained from colitis OMV-treated macrophages was more potent than that treated by the normal OMVs. The results indicated that OMVs could downregulate UGT1A1 and NRs through evoking inflammation in IECs via promoting macrophage polarization.

Effect of Different OMV Fractions on mRNA Expression of UGT1A1 and NRs in Caco-2 Cells. Bacterial OMVs were further fractionated into five fractions with different molecular weight ranges [<3 (F < 3), 3-10 (F3-10), 10-30 (F10-30), 30-50 (F30-50), >50 kDa (F > 50)], which showed big differences in the protein contents between normal and colitis groups (higher in <10-kDa fractions and lower in F10-30 and F > 50 fractions of colitis group than the normal group; Supplemental Fig. 5), indicating that DSS induction caused marked changes of bacterial compositions and/or cellular components. The F < 3 fractions of both normal and colitis groups showed no effect on hUGT1A1/hNR mRNA expressions (Fig. 5A). F10-30 fractions
significantly suppressed hUGT1A1 expression, colitis group showing more potent effects. The F30-50 fractions of both groups reduced hUGT1A1 expression to similar extents. Interestingly, a significant increase of hUGT1A1 was observed with the F50 fraction of normal group, whereas the fraction of colitis group decreased it significantly. Similarly, the F3-10 fraction of normal group did not affect the mRNA expression of all three hNRs, whereas that of the colitis group significantly suppressed hPXR and hCAR expression (Fig. 5A). The F10-30 and F30-50 fractions of both groups significantly down-regulated hPXR and hPPAR-γ, with those of colitis group showing more potent effects. It is interesting to note that the F > 50 fraction of normal OMVs unaltered hPXR and enhanced hCAR, while

Fig. 1. mRNA and protein expressions of rUGT1A1 and rNRs along small intestine and colon of rats. Animals received water (Nor), 5% DSS (colitis), feces from normal (NN) or colitis rats (NU), and 5% DSS plus feces from normal rats (UN), respectively, for 7 days. Rats were sacrificed on the last day of experiment (day 7). Small intestines and colons were collected. (A) mRNA expressions of rUGT1A1 and rNRs in different small intestinal segments and colon; (B) protein expressions of rUGT1A1 and rNRs in the duodenum and colon. mRNA expression was measured by real-time PCR. Protein expression was measured by Western blot. Data in bar charts were mean ± S.D. of six animals of each group, whereas representative Western blot result was presented. Significance of differences was determined using one-way analysis of variance with a Scheffe post hoc test. *P < 0.05 versus Nor; #P < 0.05 between specific two groups compared.
suppressing hPPAR-γ expression. In contrast, that of colitis OMVs downregulated all three NRs.

Those CM treated by >10-kDa fractions (F10-30, F30-50, and F > 50) of both normal and colitis OMVs inhibited hUGT1A1 expressions, with more potent effects observed with those treated by colitis OMVs (Fig. 5B). The effects of CM on hNR expression showed similar tendency, and the suppressing effect generally increased with mol. wt. of the OMVs fractions. The highest inhibition was observed with the CM treated by the F30-50 of the colitis OMVs, which inhibited the mRNA expression of hPXR to one third of the control cells and half of the cells treated by its normal counterpart.

Expressions of TLR2, TLR4, and NF-κB in Small Intestine and Colon from Rats. As shown in Fig. 6, DSS induction resulted in the upregulation of protein levels of TLR2, TLR4, and NF-κB in small intestine and colon. Normal-to-normal FMT (NN group) unaffected the levels of the three proteins. Normal recipients of colitis fecal samples

Fig. 2. mRNA and protein expressions of hUGT1A1 and hNRs in Caco-2 cells stimulated by microbial OMVs. Cells were treated with or without 50 μg/ml OMVs from normal, colitis, NN, NU, or UN rat feces for 24 hours. (A) mRNA expression was measured by real-time PCR; (B) protein expression was measured by Western blot. Data in bar charts were mean ± S.D. of triplicate determinations, whereas representative Western blot result was presented. Significance of differences was determined using one-way analysis of variance with a Scheffe post hoc test. *P < 0.05 versus control; #P < 0.05 between specific two groups compared.

Fig. 3. Protein expressions of hUGT1A1 and hNRs in Caco-2 cells treated by DOC-treated OMVs. (A) Cells were treated with 50 μg/ml DOC-treated OMVs or (B) transfected with TLR4 siRNA, followed by treatment of 50 μg/ml DOC-treated OMVs from normal and colitis feces for 24 hours. Protein expressions were determined by Western blot. Data in bar charts were mean ± S.D. of triplicate determinations, whereas representative Western blot result was presented. Significance of differences was determined using one-way analysis of variance with a Scheffe post hoc test. *P < 0.05 versus control; #P < 0.05 between specific two groups compared.
NU group) showed significantly higher protein expression of these proteins than NN group. The FMT from normal to colitis rats partially suppressed the elevation induced by DSS, which, however, was still significantly higher than normal, NN and NU groups. The results indicated that DSS-induced gut dysbiosis can alter the protein expressions of TLR2, TLR4, and NF-κB in small intestine and colon, and transplantation of normal fecal microbiota can diminish the changes.

Fig. 4. mRNA expressions of hUGT1A1 and hNRs in Caco-2 cells treated with CM of macrophages. Primary macrophages were treated with 50 μg/ml OMVs from normal and colitis groups for 24 hours. After incubation, macrophages were washed twice with PBS to remove OMVs and cultured in fresh serum-free DMEM for another 6 hours. The culture medium served as CM and collected for ELISA. Caco-2 cells were stimulated with CM; (A) M1-type and M2-type cytokines and chemokines produced in CM; (B) mRNA expressions of hUGT1A1 and hNRs in Caco-2 cells treated with CM. mRNA were measured by real-time PCR. Data were expressed as mean ± S.D. of triplicate determinations. Significance of differences was determined using one-way analysis of variance with a Scheffe post hoc test. *P < 0.05 versus control; #P < 0.05 between specific groups compared.

Effects of TLR4 Inhibition on mRNA Expression of UGT1A1 and NRs in Caco-2 Cells Treated by OMVs and DOC-Treated OMVs. As shown in Supplemental Fig. 6, when treated by OMVs from normal or colitis rats, TLR4 protein level was elevated, whereas TLR4 protein expression in Caco-2 cells was unaltered, whereas TLR4 protein level was elevated, with colitis OMVs showing more potent effect. The results indicated that TLR4 might be the main signaling molecule mediating OMVs stimulation.

Fig. 5. mRNA expressions of hUGT1A1 and hNRs in Caco-2 cells treated by different OMVs fractions. Fifty micrograms per milliliter OMVs preparations (10 ml) were further processed by ultrafiltration with 3-, 10-, 30-, and 50-kDa ultrafiltration membranes to obtain different fractions, as follows: <3 (F < 3), 3-10 (F3-10), 10-30 (F10-30), 30-50 (F30-50), >50 kDa (F > 50). Each fraction obtained was made up to 10 ml to maintain the same proportion in the OMVs. Cells were treated with different fractions from normal and colitis OMVs (A) or stimulated with CM of macrophages treated by different fractions of OMVs (B) for 24 hours. mRNA expression was measured by real-time PCR. Data were expressed as mean ± S.D. of triplicate determinations. Significance of differences was determined using one-way analysis of variance with a Scheffe post hoc test. *P < 0.05 versus control; #P < 0.05 between specific two groups compared.
The presence of TAK-242, a specific inhibitor of TLR4, could partially reverse the downregulation of hUGT1A1 and hNRs by microbial OMVs from both normal and colitis groups at the tested concentration (1 μM) of the inhibitor (Supplemental Fig. 7). When Caco-2 cells were transfected with TLR4 siRNA, the downregulation of hUGT1A1 and hNRs expression by OMVs from both groups was completely abrogated (Fig. 7A). Knocking down TLR4 also abrogated the dysregulation of hUGT1A1 and hNRs expressions by DOC-treated OMVs from both normal and colitis feces (Fig. 3B). These results indicated that both complete OMVs and low-LPS OMVs regulate intestinal UGT1A1 and NRs mainly through TLR4 activation.

Effects of TLR4 Inhibition on Phosphorylation of PI3K/Akt and ERK1/2 in Caco-2 Cells Treated by OMVs. Knocking down TLR4 in Caco-2 cells resulted in a decrease of TLR4 protein expression as well as reduction of phosphorylation of PI3K/Akt, ERK1/2, and NF-κB (Fig. 7B). When Caco-2 cells were stimulated by microbial OMVs, TLR4 protein expression was significantly elevated, and so did the phosphorylated PI3K/Akt, ERK1/2, and NF-κB. The colitis OMVs showed more significant effects than the normal OMVs. The TLR4 activation by microbial OMVs from both groups was successfully blocked by TLR4 siRNA transfection, leading to decreased TLR4 expression and diminished phosphorylation of PI3K/Akt, ERK1/2, and NF-κB. These results indicated that OMVs regulated intestinal UGT1A1 and NRs through activating TLR4 and PI3K/Akt and ERK1/2 phosphorylation, which resulted in NF-κB activation.

Discussion

UGT1A1 serves as an important constituent of intestinal epithelial barrier. Growing evidence links gut dysbiosis with UGT1A1 dysfunction. In this study, we verified the regulatory role of gut microbiota on intestinal UGT1A1 using DSS-induced colitis rat model plus FMT and pinpointed the main molecular events in vitro using bacterial OMVs. The main findings include the following: 1) DSS induced dysregulation of UGT1A1/NRs in rat intestine; 2) colitis-to-normal FMT caused similar alterations of UGT1A1/NRs, whereas the opposite alleviated DSS-induced changes; 3) complete OMVs from both normal and colitis rats downregulated UGT1A1/NRs expressions in Caco-2 cells directly as well as via a macrophage-mediated mechanism; low-LPS OMVs from normal rats elicited direct opposite effects to that from colitis rats; and 4) knocking down TLR4 blocked UGT1A1/NRs dysregulation evoked by OMVs and low-LPS OMVs.

Fig. 6. Protein expressions of TLR2, TLR4, and NF-κB in small intestine and colon of rats. Animals received water (Nor), 5% DSS (colitis), feces from normal (NN) or colitis rats (NU), and 5% DSS plus feces from normal rats (UN), respectively, for 7 days. Rats were sacrificed on the last day of experiment (day 7). Small intestines and colons were collected. Protein expression was measured by Western blot. Data in bar charts were mean ± S.D. of six animals of each group, whereas representative Western blot result was presented. Significance of differences was determined using one-way analysis of variance with a Scheffe post hoc test. *P < 0.05 versus Nor; #P < 0.05 between specific two groups compared.
levels, indicating the involvement of PPAR-
unaffected (Zhou et al., 2013). Our study first reported the correlation
and PPAR-
(Alex et al., 2009). They also observed decreased mRNA levels of PXR
preparations, following same descending order of Colitis
downregulated at both mRNA and protein levels by all bacterial OMVs
UGT1A1 regulation. hUGT1A1 and hNRs in Caco-2 cells were
addressed the role of Gram-negative bacterial OMVs in intestinal
(Vigsnæs et al., 2012; Kaparakis-Liaskos and Ferrero, 2015). We first
UGT1A1.
were believed to resemble human Crohn
disease and UC, respectively
(Wei et al., 2013). The discrepancy could be due to different mechanisms involved
in regulating intestinal
and hNRs at both mRNA and protein
levels in vivo. The mRNA level in vivo
– in vitro due to shorter incubation (24 hours versus 7 days) and/or simpler
biologic system (cells versus whole organism). OMVs from colitis or
NU group downregulated UGT1A1/NRs in Caco-2 cells more potently.
This should be attributed to different microbial compositional changes
induced by DSS and FMT.

The intestine harbors largest population of macrophages that steer
immune responses through releasing cytokines and chemokines (Nakata
et al., 2013). In this study, both M1- and M2-type cytokines and
chemokines were overproduced by OMV-stimulated Caco-2 cells, and
colitis OMVs showed stronger effects, supporting that gut dysbiosis
causes macrophage polarization and enhances proinflammatory re-
sponses in IECs. Incubation of Caco-2 cells with CM from OMV-
treated rat primary macrophages resulted in similar changes of
UGT1A1/NRs, which were inversely proportional to cytokine/
chemokine production. Taken together, the in vitro data support that
microbial OMVs regulate intestinal UGT1A1/NRs directly and via a
macrophage-mediated mechanism.

We further tried to locate the major effector molecules of OMVs. In
general, those >10-kDa fractions from both normal and colitis OMVs
significantly decreased hUGT1A1 and hNRs, and, in most cases, colitis
OMVs were more potent than the normal counterparts. Notably,
the >50-kDa fractions from normal OMVs upregulated hUGT1A1
and hCAR, comparing to a downregulation by colitis OMVs. CM from
macrophages treated by different OMV fractions caused similar
changes. The differential regulatory effects of normal and colitis OMVs
and fractions on hUGT1A1 and hNRs should be a result of microbial
compositional shifts and/or metabolic capability alterations induced by
DSS. Even though we observed some correlations between the protein
contents and the effects, for example, higher protein content of the >50-
kDa fractions of normal group correlates with their upregulatory effects
on hUGT1A1 and hCAR, we could not rule out the involvement of other
components in the fraction, and the constitute proteins may also vary
with sample. However, the chemical complexity of microbial OMVs and
the analytical bottleneck for complex biologic systems hamper the
identification of the molecular effectors.

TLR4 was significantly increased in IECs of UC patients (Cario and
Podolsky, 2000). TLR4 pathway disturbance is implicated in UC
development. TLR2 deficiency triggers early tight junction disruption,
which aggravates colonic inflammation (Cario et al., 2009). In this study, both TLR2 and TLR4 were upregulated in small intestine and colon of colitis, NU, and UN rats, and activated by total bacterial preparations from normal and colitis groups (Supplemental Fig. 8). However, only TLR4 was significantly activated by OMVs in vitro. These findings are in line with a previous report that TLR2 and TLR4 mainly sense Gram-positive and Gram-negative bacterial signals, respectively (Takeuchi et al., 1999). Knocking down TLR4 abrogated hUGT1A1/hNRs downregulation by OMVs, confirming TLR4 as the main mediator of bacterial OMVs signaling. However, further study is needed to determine the role of TLR2 in intestinal UGT1A1/NRs regulation in vivo and whether it accounts for the mRNA level in vivo—in vitro differences.

PI3K/Akt and mitogen-activated protein kinase (MAPK) are two major downstream pathways of TLR4 and play critical roles in various cellular processes (Troutman et al., 2012; Peroval et al., 2013). NF-κB is a key mediator of inflammatory responses. TLR4 signaling leads to rapid activation of PI3K and phosphorylation of PI3K downstream targets Akt and ERK1/2, leading to NF-κB activation and proinflammatory cytokine production. MAPK signaling pathway activation also impacts NF-κB activation (Remels et al., 2009). NF-κB activation was shown to inhibit PXR, CAR, and PPAR-γ, and, vice versa, NF-κB inhibition could enhance these NR activities (Shah et al., 2007; Neelela et al., 2008; Chai et al., 2013). We also observed a negative correlation between NF-κB and the NRs. OMVs stimulated TLR4, resulting in NF-κB activation as well as PI3K/Akt and ERK1/2 phosphorylation in Caco-2 cells, which was abolished by TLR4 siRNA transfection, supporting that TLR4 activation via MAPK/ERK and PI3K/Akt pathways.

LPS was considered to be the major contributor to virulence and inflammatory responses of Gram-negative bacteria. To determine whether other components in OMVs contribute to intestinal UGT1A1/NRs regulation, we used DOC to prepare low-LPS OMVs (decreased from hundreds to <1 EU/ml). In contrast to the decreases of hUGT1A1/hNRs downregulation by TLR4 activation via MAPK/ERK and PI3K/Akt pathways.

In conclusion, this study has demonstrated a regulatory role of gut microbiota on intestinal UGT1A1 and NRs. Gram-negative bacterial OMVs exhibited general downregulation through directly interacting with host IECs via TLR4 activation and inducing macrophage polarization, offering new insights into intestinal UGT1A1 dysfunction in gut dysbiosis-related diseases.

Authorship Contributions

Participated in research design: Gao, R. Yan.
Conducted experiments: Gao, Li, Wei, Z.-X. Yan, Hu, Huang, Han, Wai, Yang.
Performed data analysis: Gao, Li, R. Yan.
Wrote or contributed to the writing of the manuscript: Gao, R. Yan.

References

Downloaded from aspetjournals.org at August 6, 2022

Address correspondence to: Dr. Ru Yan, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China. E-mail: ruyan@umac.mo