Metabolic Profiling of the Novel Hypoxia-Inducible Factor 2α Inhibitor PT2385 In Vivo and In Vitro

Cen Xie,¹ Xiaoxia Gao,¹ Dongxue Sun,² Youbo Zhang,³ Kristopher W. Krausz, Xuemei Qin, and Frank J. Gonzalez

Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (C.X., X.G., D.S., Y.Z., K.W.K., F.J.G.); and Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People’s Republic of China (X.G., X.Q.)

Received November 27, 2017; accepted January 18, 2018

ABSTRACT

PT2385 is a first-in-class, selective small-molecule inhibitor of hypoxia-inducible factor-2α (HIF-2α) developed for the treatment of advanced clear cell renal cell carcinoma. Preclinical results demonstrated that PT2385 has potent antitumor efficacy in mouse xenograft models of kidney cancer. It also has activity toward metabolic disease in a mouse model. However, no metabolism data are currently publicly available. It is of great importance to characterize the metabolism of PT2385 and identify its effect on systemic homeostasis for the safety evaluation and rational clinical application of PT2385.

Introduction

It has been estimated that nearly 63,990 new cases of kidney cancer will be diagnosed and more than 14,400 people will die from this disease in 2017 (Siegel et al., 2017). Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer, representing 70%–75% of all primary renal cell malignancies (Muglia and Prando, 2015). In more than 90% of ccRCC patients, von Hippel-Lindau (VHL) protein is defective, leading to the activation of hypoxia-inducible factor (HIF)-α (Gnarra et al., 1994; Sato et al., 2013). The HIF-α family, consisting of HIF-1α, HIF-2α, and the less well-characterized HIF-3α, is an oxygen-sensitive transcription factor family that regulates anaerobic metabolism, energy metabolism, angiogenesis, cell proliferation, differentiation, and survival (Semenza and Wang, 1992; Keith et al., 2011). HIF-α levels are regulated by a ubiquitin–proteasome degradation pathway mediated by the E3 ubiquitin ligase VHL, and by the action of prolyl hydroxylase enzymes that hydroxylate the oxygen-sensing subunit of HIF-α, leading to recognition by VHL and ultimate degradation (Maxwell et al., 1999; Epstein et al., 2001). Over the past decades, accumulating data revealed an oncogenic role for HIF-2α in VHL-defective ccRCC and highlighted the therapeutic potential of HIF-2α antagonism in ccRCC treatment (Kondo et al., 2002; Gordan et al., 2007; Bertout et al., 2009; Vanharanta et al., 2013).

PT2385, S)-3-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (Fig. 1), is a selective and potent small-molecule HIF-2α inhibitor identified by a structure-based design approach. It allosterically blocks the heterodimerization of HIF-2α with its partner aryl hydrocarbon receptor nuclear translocator/HIF-1α, while having no effect on HIF-1α (Wallace et al., 2016). Preclinical data revealed that PT2385 treatment suppresses gene

This work was supported by the Intramural Research Program of the National Institutes of Health (National Cancer Institute) and the National Natural Science Foundation of China [Grants 81473415 and 81403007]. X.G. was supported by Shanxi University.

¹C.X. and X.G. are co-first authors.
²Current affiliation: College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
³Current affiliation: State Key Laboratory of Natural and Biomimetic Drugs (Peking University) and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China.

https://doi.org/10.1124/dmd.117.079723.

⁴This article has supplemental material available at dmd.aspetjournals.org.

ABBREVIATIONS: ccRCC, clear cell renal cell carcinoma; CYP, cytochrome P450; FMO, flavin-containing mono-oxygenase; FXR, farnesoid X receptor; HIF, hypoxia-inducible factor; HLM, human liver microsome; HRMS, high resolution mass spectrometer; IS, internal standard; MLM, mice liver microsome; MS/MS, mass spectrometry/mass spectrometry; OPLS-DA, orthogonal projections to latent structures discriminant analysis; PCA, principle components analysis; Q/TOF MS, quadrupole/time-of-flight mass spectrometer; T-β-MCA, tauro-β-muricholic acid; TCA, taurocholic acid; UDPGA, uridine 5'-diphosphoglucuronic acid trisodium salt; UGT, UDP-glucuronosyltransferase; UPLC, ultraperformance liquid chromatography; VHL, von Hippel-Lindau.

336
expression essential for tumor growth, proliferation, and angiogenesis in ccRCC cell lines and in tumor xenografts. In ccRCC mouse models, PT2385 also inhibits tumor growth and displays better efficacy than sunitinib, a currently approved first-line anti-angiogenesis drug, without cardiovascular adverse effects (Wallace et al., 2016). Similarly, the structural analog PT2399 also causes tumor regression in mouse models of primary and metastatic pVHL-defective ccRCC and patient-derived xenografts (Chen et al., 2016; Cho et al., 2016). Phase I results demonstrated that PT2385 is well tolerated and showed promising efficacy in a highly pretreated patient population (Chen et al., 2016; Courtney et al., 2017). PT2385 is currently under evaluation in a phase II clinical trial for the treatment of ccRCC. The primary objective of this trial is to examine the overall response rate of VHL-associated ccRCC tumors in untreated patients. There is another phase II study of PT2385 for patients with recurrent glioblastoma. Besides antineoplastic activity, a recent report also showed that the inhibition of intestinal HIF-2α signaling by PT2385 substantially prevents and reverses obesity, insulin resistance, and hepatic steatosis in mice (Xie et al., 2017).

To fully characterize the efficacy and safety of drug candidates, the metabolism must be determined during drug discovery and development (Xie et al., 2012). The profiling of endogenous metabolism is also helpful in understanding the action of a drug on the organism. Metabolomics is a promising tool to determine the metabolic fate of a drug and alterations of endogenous substances that can serve as biomarkers for drug efficacy and toxicity (Fang and Gonzalez, 2014). In this study, ultra-performance liquid chromatography (UPLC) high-resolution mass spectrometry (HRMS)-based metabolomics was applied to elucidate PT2385 metabolism and interactions, including identification of metabolites, the major drug-metabolizing enzymes involved, and its influence on bile acid homeostasis, through combining in vitro incubation studies and in vivo animal models.

Materials and Methods

Chemicals and Reagents. PT2385 was purchased from MedChem Express (Monmouth Junction, NJ). NADPH, uridine diphosphate glucuronic acid (UDPGA), taurocholic acid (TCA), tauro-β-muricholic acid (T-β-MCA), and alamethicin were purchased from Sigma-Aldrich (St. Louis, MO). All other reagents were of the highest grade commercially available. Livers from untreated 6-week-old male C57BL/6N mice were used to prepare mouse liver microsomes (MLMs), as previously described (Meijer et al., 1987). Human liver microsomes (HLMs), recombinant cytochromes P450s (CYPs; 1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 4A11), flavin-containing mono-oxygenases (FMOs; FMO1, FMO3, and FMO5), and UDP-glucuronosyltransferase (UGTs; 1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10, 2B15, and 2B17) were purchased from Corning Life Sciences (Tewksbury, MA).

Animals. Male C57BL/6N mice were obtained from Charles River Laboratories (Wilmington, MA). Male Hif2aΔfl/fl (control) and Hif2aΔfl/fl (intestine-specific Hif2a disruption) mice were generated and maintained, as previously described (Xie et al., 2017). Mice were housed in a temperature- and humidity-controlled room and maintained under a standard 12-hour light/12-hour dark cycle, with water and chow provided ad libitum. Mouse handling was performed in accordance with an animal study protocol approved by the National Cancer Institute Animal Care and Use Committee.

Seven male C57BL/6N (6- to 8-week-old) mice were divided into a control group (n = 4) and PT2385-treated group (n = 3). PT2385, suspended in 0.5% sodium carboxymethyl cellulose, 2.5% Tween 80, and 2.5% dimethyl sulfoxide, was given by oral gavage at a dose of 50 mg/kg body weight, and control mice were treated with vehicle (0.5% sodium carboxymethyl cellulose, 2.5% Tween 80, and 2.5% dimethyl sulfoxide). Urine and feces samples were collected for 24 hours after administration. Blood samples were collected by retro-orbital bleeding at 3 and 24 hours, respectively. After centrifugation for 10 minutes at 8000 g, serum was obtained for metabolite analysis. Gallbladder, intestine mucosa, and liver samples were collected after the mice were killed. Following centrifugation for 10 minutes at 15,000g, bile samples were collected. Liver samples were also collected from 12-week-old male littermate Hif2aΔfl/fl and Hif2aΔfl/fl mice (n = 5/group), respectively. All samples were stored at −80°C until analysis.

Sample Preparation. For sample preparation, 30 μl serum was deproteinized with 60 μl acetonitrile containing 2 μM chloropropamide (internal standard [IS]). After centrifugation for 10 minutes at 15,000g, 50 μl supernatant was diluted with 50 μl water containing 0.1% formic acid. Urine samples were prepared by mixing 30 μl urine with 60 μl 66% aqueous acetonitrile containing 2 μM IS. The feces were pulverized, and 1/20 (w/v) 66% aqueous acetonitrile (2 μM IS) was added for extraction, followed by centrifugation. An aliquot of 2 μl bile was deproteinized with 200 μl acetonitrile containing 2 μM IS. After centrifugation for 10 minutes at 15,000g, the supernatants were diluted with 800 μl water containing 0.1% formic acid. All samples were centrifuged at 15,000g for 10 minutes, and 5 μl aliquot of the supernatants was injected into a
In Vitro Incubation Reaction to Analyze the Metabolic Pathway of PT2385. For liver microsomes, the incubation system (200 μl) contained 50 mM Tris-HCl buffer solution (pH 7.4), 0.5 mg/ml HLM or MLM, 5 mM MgCl2, 2 mM freshly prepared UDPGA, 25 μg/ml alamethicin, and 10 μM PT2385. The mixtures were preincubated at 37°C for 3 minutes, and reactions were initiated with 2 mM freshly prepared NADPH. The incubation mixtures without MLM (or HLM), NADPH, UDPGA, and PT2385 were used as the controls. The incubation system for recombinant human CYPs and FMOs was similar to the liver microsome incubation system, except that the microsomes were substituted with 50 nM recombinant enzymes and UDPGA was excluded. The incubation system for recombinant human UGTs contained 50 mM Tris-HCl buffer solution (pH 7.4), 50 nM CYP2C19, 5 mM MgCl2, 2 mM UDPGA, 2 mM NADPH, and 10 μM PT2385. The reactions were stopped by adding 200 μl ice-cold acetonitrile containing 2 μM IS after 60 minutes. After centrifugation at 15,000g for 10 minutes, a 5 μl aliquot of the supernatant was injected into a UPLC Q/TOF MS. The relative abundance (peak area ratio of metabolite/IS) is given.

Fig. 2. Multivariate data analysis and PT2385 metabolite identification. Samples were collected from mice 24 hours after orally administered with vehicle or PT2385 at a single dose of 50 mg/kg. (A and B) PCA score plot (A) and S-plot (B) of feces metabolome. (C and D) PCA score plot (C) and S-plot (D) of urine metabolome. (E and F) PCA score plot (E) and S-plot (F) of bile metabolome. (G and H) PCA score plot (G) and S-plot (H) of 3-hour serum metabolome. Vehicle (■) and PT2385 (○). Each point represents an individual mouse sample in PCA score plot and a unique ion in S-plot.
Multivariate data matrix containing information on sample identity, ionization source. Separation was achieved on an Acquity UPLC/Premier Q/TOF MS, with an electrospray ionization source. Centroiding, deisotoping, filtering, peak recognition, and integration. The data was then deconvoluted using SIMCA software to latent structures discriminant analysis (OPLS-DA) was used to analyze the data.

PCA separated the control and PT2385 treatment groups from feces, urine, bile, and serum samples (Fig. 2). The OPLS-DA loading S-plot showed the major ions contributing to the separation containing the parent compound (M0) and metabolites (M1–M12). Detailed information on these metabolites is shown in Table 1.

| Metabolic Elucidation in Mice | M1 and M2, detected in serum, urine, bile, and urine, were eluted at 5.5 and 5.7 minutes, respectively. The deprotonated molecular ions at m/z 398.0313 were 16 Da higher than the parent compound, indicating hydroxylation. The presence of a m/z 151.0067 fragment ion in the MS/MS spectrum of M1 suggested that the oxygen was introduced in the fluorobenzonitrile moiety (Fig. 1B). The mass spectrometry/mass spectrometry (MS/MS) spectrum of PT2385 gave major fragment ions at m/z 347.0089, 342.0236, 282.0390, 263.0400, 235.0438, and 136.0203 (Fig. 1C), and the tentative fragmentation patterns and ion identification proposed in Fig. 1D. Typically, the fragment ion at m/z 342.0234 was formed via double dehydrofluorination, and the m/z 347.0089 ion was formed via the loss of a methyl-free radical beside the sulfonyl combined with dehydrofluorination. The fragment ion at m/z 136.0203 was characteristic of the fluorobenzonitrile moiety, acting as a diagnostic ion for metabolic elucidation on the fluorobenzonitrile ring.

UPLC-HRMS analysis coupled with multivariate data analysis was used to profile the PT2385 metabolites found in mice. Unsupervised PCA separated the control and PT2385 treatment groups from feces, urine, bile, and serum samples (Fig. 2). The OPLS-DA loading S-plot showed the major ions contributing to the separation containing the parent compound (M0) and metabolites (M1–M12). Detailed information on these metabolites is shown in Table 1.

Results

Metabolomics Analysis to Trace Metabolites for Exposure to PT2385. The chromatographic and mass fragmentation pattern of the reference PT2385 was first investigated. PT2385 eluted at 6.0 minutes (Fig. 1A) with a deprotonated molecular ion at m/z 382.0365 in the negative mode; however, the most abundant peak was an in-source fragment ion at m/z 362.0325 due to the neutral loss of a hydrogen fluoride moiety (Fig. 1B). The mass spectrometry/mass spectrometry (MS/MS) spectrum of PT2385 gave major fragment ions at m/z 347.0089, 342.0236, 282.0390, 263.0400, 235.0438, and 136.0203 (Fig. 1C), and the tentative fragmentation patterns and ion identification proposed in Fig. 1D. Typically, the fragment ion at m/z 342.0234 was formed via double dehydrofluorination, and the m/z 347.0089 ion was formed via the loss of a methyl-free radical beside the sulfonyl combined with dehydrofluorination. The fragment ion at m/z 136.0203 was characteristic of the fluorobenzonitrile moiety, acting as a diagnostic ion for metabolic elucidation on the fluorobenzonitrile ring.

UPLC-HRMS analysis coupled with multivariate data analysis was used to profile the PT2385 metabolites found in mice. Unsupervised PCA separated the control and PT2385 treatment groups from feces, urine, bile, and serum samples (Fig. 2). The OPLS-DA loading S-plot showed the major ions contributing to the separation containing the parent compound (M0) and metabolites (M1–M12). Detailed information on these metabolites is shown in Table 1.

| Metabolic Elucidation in Mice | M1 and M2, detected in serum, urine, bile, and urine, were eluted at 5.5 and 5.7 minutes, respectively. The deprotonated molecular ions at m/z 398.0313 were 16 Da higher than the parent compound, indicating hydroxylation. The presence of a m/z 151.0067 fragment ion in the MS/MS spectrum of M1 suggested that the oxygen was introduced in the fluorobenzonitrile moiety (Fig. 1B). The mass spectrometry/mass spectrometry (MS/MS) spectrum of PT2385 gave major fragment ions at m/z 347.0089, 342.0236, 282.0390, 263.0400, 235.0438, and 136.0203 (Fig. 1C), and the tentative fragmentation patterns and ion identification proposed in Fig. 1D. Typically, the fragment ion at m/z 342.0234 was formed via double dehydrofluorination, and the m/z 347.0089 ion was formed via the loss of a methyl-free radical beside the sulfonyl combined with dehydrofluorination. The fragment ion at m/z 136.0203 was characteristic of the fluorobenzonitrile moiety, acting as a diagnostic ion for metabolic elucidation on the fluorobenzonitrile ring.

UPLC-HRMS analysis coupled with multivariate data analysis was used to profile the PT2385 metabolites found in mice. Unsupervised PCA separated the control and PT2385 treatment groups from feces, urine, bile, and serum samples (Fig. 2). The OPLS-DA loading S-plot showed the major ions contributing to the separation containing the parent compound (M0) and metabolites (M1–M12). Detailed information on these metabolites is shown in Table 1.

| Metabolic Elucidation in Mice | M1 and M2, detected in serum, urine, bile, and urine, were eluted at 5.5 and 5.7 minutes, respectively. The deprotonated molecular ions at m/z 398.0313 were 16 Da higher than the parent compound, indicating hydroxylation. The presence of a m/z 151.0067 fragment ion in the MS/MS spectrum of M1 suggested that the oxygen was introduced in the fluorobenzonitrile moiety (Fig. 1B). The mass spectrometry/mass spectrometry (MS/MS) spectrum of PT2385 gave major fragment ions at m/z 347.0089, 342.0236, 282.0390, 263.0400, 235.0438, and 136.0203 (Fig. 1C), and the tentative fragmentation patterns and ion identification proposed in Fig. 1D. Typically, the fragment ion at m/z 342.0234 was formed via double dehydrofluorination, and the m/z 347.0089 ion was formed via the loss of a methyl-free radical beside the sulfonyl combined with dehydrofluorination. The fragment ion at m/z 136.0203 was characteristic of the fluorobenzonitrile moiety, acting as a diagnostic ion for metabolic elucidation on the fluorobenzonitrile ring.

UPLC-HRMS analysis coupled with multivariate data analysis was used to profile the PT2385 metabolites found in mice. Unsupervised PCA separated the control and PT2385 treatment groups from feces, urine, bile, and serum samples (Fig. 2). The OPLS-DA loading S-plot showed the major ions contributing to the separation containing the parent compound (M0) and metabolites (M1–M12). Detailed information on these metabolites is shown in Table 1.

Results

Metabolomics Analysis to Trace Metabolites for Exposure to PT2385. The chromatographic and mass fragmentation pattern of the reference PT2385 was first investigated. PT2385 eluted at 6.0 minutes (Fig. 1A) with a deprotonated molecular ion at m/z 382.0365 in the negative mode; however, the most abundant peak was an in-source fragment ion at m/z 362.0325 due to the neutral loss of a hydrogen fluoride moiety (Fig. 1B). The mass spectrometry/mass spectrometry (MS/MS) spectrum of PT2385 gave major fragment ions at m/z 347.0089, 342.0236, 282.0390, 263.0400, 235.0438, and 136.0203 (Fig. 1C), and the tentative fragmentation patterns and ion identification proposed in Fig. 1D. Typically, the fragment ion at m/z 342.0234 was formed via double dehydrofluorination, and the m/z 347.0089 ion was formed via the loss of a methyl-free radical beside the sulfonyl combined with dehydrofluorination. The fragment ion at m/z 136.0203 was characteristic of the fluorobenzonitrile moiety, acting as a diagnostic ion for metabolic elucidation on the fluorobenzonitrile ring.

UPLC-HRMS analysis coupled with multivariate data analysis was used to profile the PT2385 metabolites found in mice. Unsupervised PCA separated the control and PT2385 treatment groups from feces, urine, bile, and serum samples (Fig. 2). The OPLS-DA loading S-plot showed the major ions contributing to the separation containing the parent compound (M0) and metabolites (M1–M12). Detailed information on these metabolites is shown in Table 1.

Results

Metabolomics Analysis to Trace Metabolites for Exposure to PT2385. The chromatographic and mass fragmentation pattern of the reference PT2385 was first investigated. PT2385 eluted at 6.0 minutes (Fig. 1A) with a deprotonated molecular ion at m/z 382.0365 in the negative mode; however, the most abundant peak was an in-source fragment ion at m/z 362.0325 due to the neutral loss of a hydrogen fluoride moiety (Fig. 1B). The mass spectrometry/mass spectrometry (MS/MS) spectrum of PT2385 gave major fragment ions at m/z 347.0089, 342.0236, 282.0390, 263.0400, 235.0438, and 136.0203 (Fig. 1C), and the tentative fragmentation patterns and ion identification proposed in Fig. 1D. Typically, the fragment ion at m/z 342.0234 was formed via double dehydrofluorination, and the m/z 347.0089 ion was formed via the loss of a methyl-free radical beside the sulfonyl combined with dehydrofluorination. The fragment ion at m/z 136.0203 was characteristic of the fluorobenzonitrile moiety, acting as a diagnostic ion for metabolic elucidation on the fluorobenzonitrile ring.
fragment ions of PT2385 (Fig. 3E). Analysis of the accurate mass showed that the loss of 2 Da was attributed to defluorination and the incorporation of a hydroxyl group. According to fluorine reactivity in a published report (Xie et al., 2013), this suggested hydroxyl substitution of fluorine in the fluorobenzonitrile portion of the molecule.

M8 exhibited the deprotonated molecular ion at \(m/z \) 558.0701 at 5.5 minutes in urine, bile, and serum, which was 176 Da higher than that of PT2385, indicative of glucuronidation. In liver microsomal incubations supplemented with UDPGA, M8 was the only metabolite formed, further supporting that M8 is a direct glucuronide conjugate of PT2385. The only possible conjugation position was at the aliphatic hydroxyl group. M9 showed the deprotonated molecular ion at \(m/z \) 543.0534 at 5.8 minutes in urine, which was 161 Da higher than that of PT2385, indicating a \(N \)-acetylcysteine conjugate of PT2385. MS/MS fragmentation behavior confirmed that \(N \)-acetylcysteine was attached to the fluorobenzonitrile moiety (Fig. 3F). M10 and M11 were eluted at 4.8 and 5.1 minutes, respectively, in urine and bile. Their deprotonated molecular ion (\(m/z \) 574.0661) was 176 Da

Fig. 3. MS/MS spectra and proposed fragmentation patterns of representative metabolites. (A) M1. (B) M2. (C) M3 and M4. (D) M5 and M6. (E) M7. (F) M9. (G) M10. (H) M11.
higher than that of M1 and M2, suggesting that they were glucuronide conjugates of M1 and M2, respectively, most likely at the new phenolic hydroxyl group (Fig. 3, G and H). M12 was detected in the bile and eluted at 5.0 minutes. The deprotonated molecular ion (m/z 557.0758) was 176 Da higher than that of M7, indicating that it was a glucuronide conjugate of M7 at the phenolic hydroxyl group.

The proposed metabolic pathways of PT2385 in mice are depicted in Fig. 4.

In Vitro Biotransformation of PT2385 by Liver Microsomes. To more fully determine the biotransformation mechanism of PT2385, the metabolism of PT2385 in HLM and MLM was studied. The phase I metabolites M1, M2, M3, M4, and M7 appeared in the NADPH-supplemented incubation systems, but were absent without adding NADPH (Fig. 5, A and B), indicating that the formation of these oxidative metabolites was NADPH dependent. In the presence of UDPGA, M8 was detected. The formation of glucuronide conjugates M10–M12 was only observed in the incubation system with the presence of both UDPGA and NADPH, but was not detected in the system only with NADPH or UDPGA (Fig. 5, A and B). This was consistent with the glucuronide conjugates (M10, M11, and M12) formed from the oxidative metabolites (M1, M2, and M7), the formation of which required NADPH as a cofactor. HLM and MLM incubations yielded identical metabolic profiles toward PT2385, which demonstrated that mouse may be a suitable animal model to predict PT2385 metabolism and toxicity in humans.

CYP2C19 Is the Predominant Enzyme Responsible for PT2385 Oxidative Metabolism. Identification of the enzymes involved in the biotransformation pathways can facilitate a more complete understanding of an interindividual response to PT2385. Therefore, the catalytic activities of a panel of human recombinant CYP and FMO enzymes toward oxidizing PT2385 were examined. CYP2C19 was identified as the principal isoenzyme that mediated the oxidative metabolism of PT2385, whereas, to a much lesser extent, CYP1A1, CYP1A2, CYP2D6, and CYP3A4 also catalyzed M1 and M2 formation and CYP1A2 exhibited oxidative defluorination activity to form M7 (Fig. 5, C–E).

Multiple UGTs Participate in PT2385 Glucuronidation. Because several glucuronide conjugates were derived from oxidative metabolites, CYP2C19 and NADPH were included in the recombinant UGT incubation systems. Among all the UGTs examined, UGT2B17, followed by UGT2B7, UGT2B15, and UGT1A6, was involved in the formation of M8 (Fig. 5F); UGT1A1, followed by UGT1A3, UGT1A9, UGT2B15, and UGT2B17, appeared to be responsible for the formation of M10 and M11 (Fig. 5, G and H); and UGT1A1 and UGT1A3, followed by UGT1A9, UGT2B4, UGT2B15, and UGT2B17, played a role in the formation of M12 (Fig. 5I). The generation of various glucuronide conjugates of PT2385 was catalyzed by different subsets of UGTs, implying the existence of different conjugation sites and supporting the view that the structure elucidation was reasonable.

Metabolomics Analysis Revealed Unexpected PT2385-Induced Bile Acid Disruption. To understand the in vivo effects of PT2385, metabolomics analysis was used to profile the endogenous metabolites...
in the 24-hour serum and liver from PT2385-treated mice. Multivariate data analysis was applied to analyze the data sets from both vehicle- and PT2385-treated groups. As expected, PCA modeling of mouse serum showed that samples from PT2385-treated mice clustered away from the controls, indicating notable metabolic changes between these two groups (Fig. 6A). The OPLS-DA–loading S-plot showed that the major ions contributing to the separation displayed the deprotonated molecular ions at \(m/z \) 514.2842 and 514.2839 (Fig. 6B). Based on the metabolomics database (https://metlin.scripps.edu/landing_page.php?pgcontent=main), these ions were assumed to be bile acids. The typical \(m/z \) with the chromatographic retentions and MS/MS spectra indicated that they were TCA and T-\(\beta \)-MCA, which were further confirmed by comparisons with authentic standards. Likewise, TCA and T-\(\beta \)-MCA were also the major ions contributing to the separation of liver samples (Fig. 6, C and D). Taken together, PT2385 treatment significantly elevated TCA and T-\(\beta \)-MCA levels in serum and liver (Fig. 6, E and F).

PT2385 Upregulates Bile Acid Synthesis-Related Gene Expression. To further determine the mechanism for PT2385-induced bile acid disruption, the expression of mRNAs encoding enzymes involved in bile acid synthesis was investigated. The results showed that treatment with PT2385 significantly upregulated \(Cyp7a1 \) mRNA encoding CYP7A1, the rate-limiting enzyme in bile acid synthesis (Fig. 7A). Farnesoid X receptor (FXR) serves as a bile acid sensor and plays an important role in regulation of bile acid homeostasis in enterohepatic circulation (Matsubara et al., 2013). Both hepatic and intestinal FXR controls bile acid transport and synthesis (Li and Chiang, 2015), but PT2385 treatment did not alter either hepatic or intestinal FXR signaling (Fig. 7, B and C). Furthermore, intestine-specific \(Hif2a \) ablation substantially upregulated \(Cyp7a1 \) mRNA in liver. These data suggested that PT2385 disrupted bile acid homeostasis through the inhibition of intestinal HIF-2\(\alpha \) signaling.

Discussion

PT2385 is a selective and potent HIF-2\(\alpha \) inhibitor and showed promising efficacy in the treatment of advanced ccRCC and metabolic

![Fig. 5. In vitro metabolism of PT2385. (A) PT2385 metabolism in HLM. (B) PT2385 metabolism in MLM. (C–E) The CYPs involved in M1 (C), M2 (D), and M7 (E) formation. (F–I) The UGTs involved in M8 (F), M10 (G), M11 (H), and M12 (I) formation.](https://metlin.scripps.edu/landing_page.php?pgcontent=main)
PT2385 was rapidly absorbed with a median t_{max} of 2 hours and a mean $t_{1/2}$ of 17 hours in ccRCC patients (Courtney et al., 2017). However, detailed metabolic information is currently publically unavailable. Therefore, in the present study, the metabolic pathways of PT2385 were elucidated with the combined use of in vivo and in vitro models.

PT2385 is extensively metabolized in mice because the parent drug is only a minor component in urine and bile after oral administration to mice. The primary routes of PT2385 biotransformation involve hydroxylation, oxidative defluorination, and glucuronidation. The hydroxylated metabolite M1 and glucuronide conjugate M8 are the major urinary metabolites, and M8 is the major biliary metabolite. The parent drug is the most abundant drug-related material in feces, which could be largely attributed to the unabsorbed PT2385 fraction.

The circulating drug-related metabolites are mainly composed of the unmodified PT2385 and, to a much lesser extent, M1 and M8. Thus, it is less likely that M1 and M8 contribute to the pharmacological and toxicological effects of PT2385. Results from HLM and MLM experiments suggest that the mouse is a reasonable surrogate for predicting metabolism of this drug in humans. It should be noted that only male mice were used in the current study because all of the published preclinical studies for PT2385 and its analog PT2399 were done with males (Cho et al., 2016; Wallace et al., 2016).

Another important task in preclinical drug metabolism studies is phenotyping the enzymes involved in PT2385 metabolism, which facilitates the understanding of individual’s response and could predict drug–drug interactions. The in vitro incubations of PT2385 with recombinant human phase I–metabolizing enzymes revealed that

![Fig. 6. Multivariate data analysis and endogenic metabolic profiling of PT2385. Samples were collected from mice 24 hours after orally administered with vehicle or PT2385 at a single dose of 50 mg/kg. (A and B) PCA score plot (A) and S-plot (B) of 24-hour serum metabolome. (C and D) PCA score plot (C) and S-plot (D) of liver metabolome. Vehicle (■) and PT2385 (●). Each point represents an individual mouse sample in PCA score plot and a unique ion in S-plot. (E and F) Relative abundance of TCA and T-β-MCA in 24-hour serum (E) and liver (F). Data are presented as mean ± S.E.M. * $P < 0.05$; ** $P < 0.01$, versus vehicle group, by two-tailed Student’s t-test.](#)
multiple enzymes, including CYP2C19, CYP1A1, CYP1A2, CYP2D6, CYP2C9, and CYP3A4, participate in the hydroxylation of PT2385. Among these enzymes, CYP2C19 is the predominant CYP involved in PT2385 oxidation. CYP2C19 plays a critical role in the metabolism of drugs, including anticancer, antidepressant, antihypertensive, antiplatelet, and antiulcer drugs (Hirota et al., 2013). However, CYP2C19 is polymorphic with 12%–23% of null alleles in Asians and 3%–5% in Caucasians, leading to significant interindividual differences in activity that could result in different metabolism rates and fluctuations in exposure levels of PT2385 (Goldstein and de Morais, 1994; Umamaheswaran et al., 2014). For phase II metabolism, there were UGT1A family glucuronidate phenol metabolites (M1, M2, and M7), with UGT1A1/3 responsible for M10 and M12 formation, and UGT1A1/3/9 for M11 formation. UGT1A catalyzes the glucuronidation of a wide range of substrates, including endogenous substrates such as bilirubin, bile acids, and steroids, as well as drugs and environment pollutants (Rowland et al., 2013). Moreover, UGT2B17 dominates the direct glucuronide conjugation of the aliphatic hydroxyl group in PT2385 to M8. UGT2B17 is mainly expressed in the liver with very low expression in the small intestine and kidney (Nakamura et al., 2008). M8 is the most abundant metabolite found in bile, which is formed in liver and quickly excreted in bile. It was also reported that UGT2B17 exhibited high expression in jejunum of morbidly obese subjects and had the high interindividual variation, which might be the result of a genetic polymorphism (Miyauchi et al., 2016). Furthermore, the activity of UGT2B17 is also significantly impacted by complex factors, such as age, hormonal signaling, medications, supplements, alcohol consumption, and smoking (Neumann et al., 2016). Therefore, there might be significant interpatient variability in drug metabolism in populations and drug–drug interactions of PT2385, perhaps leading to increased toxicity or altered efficacy. Consistently, pharmacokinetic variability was observed in patients treated with PT2385 in the current phase I dose-escalation study (Courtney et al., 2017). To reduce this variability, PT2977 was developed with more potency than PT2385, and is in a phase II trial in patients with advanced renal tumors.

Metabolomics analysis also revealed that PT2385 disrupted bile acid homeostasis, as shown by notably increased TCA and T-β-MCA in mice after PT2385 administration. TCA and T-β-MCA are major primary bile acids, constituting about 60% of the taurine-conjugated bile acids and 18% of total bile acids in mice (García-Cañaveras et al., 2012). The elevated TCA and T-β-MCA levels observed indicate that PT2385 may induce cholestasis after long-term application. It was reported that the ligand-activated nuclear receptor FXR mainly regulates bile acid synthesis enzymes and transporters by a complex network of transcriptional cascades (Eloranta and Kullak-Ublick, 2005). CYP7A1 catalyzes the first reaction in the cholesterol catabolic pathway in liver and is the rate-limiting step in bile acid synthesis (Chiang, 2009). The expression of CYP7A1 is repressed by either SHP via liver FXR activation or FGF15 via intestine FXR activation (Goodwin et al., 2000; Inagaki et al., 2005). However, transcriptional analysis for bile acid synthesis genes reveals that, among FXR and its target gene mRNAs in liver and intestine, only the expression of Cyp7a1 mRNA in livers is upregulated by PT2385 treatment. Moreover, Cyp7a1 mRNA levels are also increased in the livers of intestinal-specific Hif2a knockout mice. These data imply that PT2385 might upregulate liver CYP7A1 by inhibiting intestinal HIF-2α, independent of FXR signaling. Others reported that activation of hepatic HIF-2α leads to the inhibition of CYP7A1 by repressing the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of CYP7A1 (Ramakrishnan et al., 2014). However, neither PT2385 treatment nor intestinal Hif2a disruption affects hepatic HIF-2α signaling (Xie et al., 2017). The link

Fig. 7. PT2385 treatment upregulates bile acid synthesis. (A) Bile acid synthesis mRNAs in the livers after PT2385 exposure. (B) FXR and its target gene mRNAs in mouse liver after PT2385 exposure. (C) FXR and its target gene mRNAs in mouse intestine after PT2385 exposure. (D) Bile acid synthesis mRNAs in the livers of Hif2afl/fl and Hif2afl/ME mice. Data are presented as mean ± S.E.M. *P < 0.05; **P < 0.01, versus vehicle group or Hif2afl/fl mice, by two-tailed Student’s t test.
between intestine HIF-2α and bile acid homeostasis needs further investigation.

In conclusion, this study is the first report on PT2385 metabolism and its modulation of bile acid homeostasis. The metabolites from PT2385 are mainly derived from CYP2C19-mediated hydroxylation and oxidative defluorination and UGT2B17- and UGT1A1/3-mediated glucuronidation. The genetic polymorphisms of CYP2C19 and UGT2B17 may explain potential individual variation observed during its clinical trials. Intestinal HIF-2α inhibition by PT2385 treatment disrupts bile acid homeostasis in mice. The potential safety issues regarding long-term use of PT2385 need further assessment. Continued investigation into the connection between intestine HIF-2α and bile acid synthesis will be helpful in understanding the function of intestinal HIF-2α. Taken together, the information provided in the present study reveals potential drug–organism interactions for PT2385, expands the drug substrate spectra for CYP2C19 and UGT2B17, and thus could be beneficial for further development of PT2385 or its structural analogs.

Authorship Contributions

Conducted experiments: Xie, Gao, Sun, Zhang, Krausz.

Performed data analysis: Xie, Gao.

Wrote or contributed to the written manuscript: Xie, Gao, Gonzalez.

References

